Week 6: Assorted Problems

- 1: Prove Cauchy's mean value theorem: Let $f, g : [a, b] \to \infty$ be continuous on [a, b] and differentiable on (a, b). Then there exists $c \in (a, b)$ such that (f(b) f(a))g'(c) = (g(b) g(a))f'(c).
- **2:** Let $a_1 = 2$ and $a_n = 2^{a_{n-1}}$ for $n \ge 2$. Find the smallest n such that $a_n \ge 16^{16^{16^{16}}}$.
- **3:** Prove that every positive rational number can be expressed as a quotient of products of numbers of the form $\binom{n}{\lfloor n/2 \rfloor}$ where *n* is a positive integer.
- 4: Let $g(z) : \mathbb{C} \to \mathbb{C}$ be an entire (complex analytic on \mathbb{C}) function such that $g(z^2) = g(z) + g(z-1)$ for all $z \in \mathbb{C}$. Prove that g(z) = 0.

5: Let $a_0 = 2$. For $n \ge 1$, let a_n be the smallest positive integer such that $\sum_{j=0}^{n} \frac{1}{a_j} < 1$. Prove that $\sum_{n=1}^{\infty} \frac{1}{\log_2(a_n)}$ converges.

- **6:** Let p be a prime and let G be a subgroup of \mathbb{F}_p^{\times} of order divisible by 6. Prove that there exist $a, b, c \in G$ such that a + b = c.
- **7:** Let $n \ge 1$ and let $a_1 \le a_2 \le \cdots \le a_n$ be real numbers such that $a_1 + 2a_2 + \cdots + na_n = 0$. Prove that for any real number x, we have $\sum_{i=1}^n a_i \lfloor ix \rfloor \ge 0$.
- 8: Let $f : [0, \infty) \to \mathbb{R}$ be differentiable with |f(x)| bounded and $f(x)f'(x) \ge \cos x$ for all x. Prove that $\lim_{x\to\infty} f(x)$ does not exist.
- **9:** Find all positive integers m such that for $n = 4m(2^m 1)$, we have $n \mid a^m 1$ for all a coprime to n.
- **10:** Use the Polya-Vinogradov inequality $\left|\sum_{a=1}^{m} \left(\frac{a}{p}\right)\right| \leq \sqrt{p} \log p$ to prove that there exists $1 \leq a < p^{\frac{1}{2\sqrt{e}}} (\log p)^2$ that is a quadratic non-residue mod p.

11: Suppose $f: (0,\infty) \to \mathbb{R}$ is differentiable with $\lim_{x \to \infty} \left(f(x) + \frac{f'(x)}{x} \right) = 0$. Prove that $\lim_{x \to \infty} f(x) = 0$.

12: Prove Sperner's Theorem. Let S be a set of subsets of $\{1, 2, ..., n\}$ such that for any $A, B \in S$, either $A \not\subseteq B$ or $B \not\subseteq A$. Then $|S| \leq {n \choose \lfloor n/2 \rfloor}$.

Week 6: Hints

- **1:** Let h(x) = f(x) rg(x) where $r \in \mathbb{R}$ is chosen so that h(a) = h(b).
- **2:** Take \log_2 a few times.
- **3:** It is enough to consider only *n* prime.
- 4: Prove that there exists some M > 0 and d > 0 such that $|g(z)| \leq M|z|^d$. This implies that g is a polynomial.
- **5:** Prove that $a_{n+1} = a_n^2 a_n + 1$.
- **6:** G is cyclic. Let $\alpha \in G$ be an element of order 6.
- **7:** Induct on *n*. Let $b_i = a_i + (2/n)a_{n+1}$.
- 8: Consider $F(x) = f(x)^2 \sin x$.
- **9:** Move to the sphere. Prove that the surface area of the part of the sphere of radius R bounded within two parallel planes of distance d is equal to $2\pi Rd$.
- 10: Let N be the number of quadratic non-residues among 1, 2, ..., m. Let X be the smallest quadratic non-residue. Then every quadratic non-residue has a prime divisor at least X. So $N \leq \sum_{X \leq p < m} \frac{m}{p}$. Polya Vincerradov gives $|m| = 2N| \leq \sqrt{n}\log n$.

Polya-Vinogradov gives $|m - 2N| \le \sqrt{p} \log p$.

- **11:** Apply Cauchy's mean value theorem to $g(x) = e^{x^2/2} f(x)$ and $h(x) = e^{x^2/2}$.
- **12:** For any permutation σ of $\{1, 2, ..., n\}$ and any i = 1, ..., n, let $A_i(\sigma)$ be 1 if $\{\sigma(1), ..., \sigma(i)\} \in S$ and 0 otherwise. Let $X(\sigma) = \sum_{i=1}^n A_i(\sigma)$. Then $X(\sigma) \leq 1$ for all σ . Compute $\sum_{\sigma} X(\sigma)$ via $\sum_{\sigma} A_i(\sigma)$.