## Week 6: Assorted Problems

1: Prove Cauchy's mean value theorem: Let $f, g:[a, b] \rightarrow \infty$ be continuous on $[a, b]$ and differentiable on $(a, b)$. Then there exists $c \in(a, b)$ such that $(f(b)-f(a)) g^{\prime}(c)=(g(b)-g(a)) f^{\prime}(c)$.

2: Let $a_{1}=2$ and $a_{n}=2^{a_{n-1}}$ for $n \geq 2$. Find the smallest $n$ such that $a_{n} \geq 16^{16^{16^{16}}}$.
3: Prove that every positive rational number can be expressed as a quotient of products of numbers of the form $\binom{n}{\lfloor n / 2\rfloor}$ where $n$ is a positive integer.

4: Let $g(z): \mathbb{C} \rightarrow \mathbb{C}$ be an entire (complex analytic on $\mathbb{C}$ ) function such that $g\left(z^{2}\right)=g(z)+g(z-1)$ for all $z \in \mathbb{C}$. Prove that $g(z)=0$.

5: Let $a_{0}=2$. For $n \geq 1$, let $a_{n}$ be the smallest positive integer such that $\sum_{j=0}^{n} \frac{1}{a_{j}}<1$. Prove that $\sum_{n=1}^{\infty} \frac{1}{\log _{2}\left(a_{n}\right)}$ converges.

6: Let $p$ be a prime and let $G$ be a subgroup of $\mathbb{F}_{p}^{\times}$of order divisible by 6 . Prove that there exist $a, b, c \in G$ such that $a+b=c$.

7: Let $n \geq 1$ and let $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ be real numbers such that $a_{1}+2 a_{2}+\cdots+n a_{n}=0$. Prove that for any real number $x$, we have $\sum_{i=1}^{n} a_{i}\lfloor i x\rfloor \geq 0$.

8: Let $f:[0, \infty) \rightarrow \mathbb{R}$ be differentiable with $|f(x)|$ bounded and $f(x) f^{\prime}(x) \geq \cos x$ for all $x$. Prove that $\lim _{x \rightarrow \infty} f(x)$ does not exist.

9: Find all positive integers $m$ such that for $n=4 m\left(2^{m}-1\right)$, we have $n \mid a^{m}-1$ for all $a$ coprime to $n$.
10: Use the Polya-Vinogradov inequality $\left|\sum_{a=1}^{m}\left(\frac{a}{p}\right)\right| \leq \sqrt{p} \log p$ to prove that there exists $1 \leq a<$ $p^{\frac{1}{2 \sqrt{e}}}(\log p)^{2}$ that is a quadratic non-residue $\bmod p$.

11: Suppose $f:(0, \infty) \rightarrow \mathbb{R}$ is differentiable with $\lim _{x \rightarrow \infty}\left(f(x)+\frac{f^{\prime}(x)}{x}\right)=0$. Prove that $\lim _{x \rightarrow \infty} f(x)=0$.
12: Prove Sperner's Theorem. Let $S$ be a set of subsets of $\{1,2, \ldots, n\}$ such that for any $A, B \in S$, either $A \nsubseteq B$ or $B \nsubseteq A$. Then $|S| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

## Week 6: Hints

1: Let $h(x)=f(x)-r g(x)$ where $r \in \mathbb{R}$ is chosen so that $h(a)=h(b)$.

2: Take $\log _{2}$ a few times.

3: It is enough to consider only $n$ prime.

4: Prove that there exists some $M>0$ and $d>0$ such that $|g(z)| \leq M|z|^{d}$. This implies that $g$ is a polynomial.

5: Prove that $a_{n+1}=a_{n}^{2}-a_{n}+1$.

6: $G$ is cyclic. Let $\alpha \in G$ be an element of order 6 .

7: Induct on $n$. Let $b_{i}=a_{i}+(2 / n) a_{n+1}$.
8: Consider $F(x)=f(x)^{2}-\sin x$.

9: Move to the sphere. Prove that the surface area of the part of the sphere of radius $R$ bounded within two parallel planes of distance $d$ is equal to $2 \pi R d$.

10: Let $N$ be the number of quadratic non-residues among $1,2, \ldots, m$. Let $X$ be the smallest quadratic non-residue. Then every quadratic non-residue has a prime divisor at least $X$. So $N \leq \sum_{X \leq p<m} \frac{m}{p}$. Polya-Vinogradov gives $|m-2 N| \leq \sqrt{p} \log p$.

11: Apply Cauchy's mean value theorem to $g(x)=e^{x^{2} / 2} f(x)$ and $h(x)=e^{x^{2} / 2}$.

12: For any permutation $\sigma$ of $\{1,2, \ldots, n\}$ and any $i=1, \ldots, n$, let $A_{i}(\sigma)$ be 1 if $\{\sigma(1), \ldots, \sigma(i)\} \in S$ and 0 otherwise. Let $X(\sigma)=\sum_{i=1}^{n} A_{i}(\sigma)$. Then $X(\sigma) \leq 1$ for all $\sigma$. Compute $\sum_{\sigma} X(\sigma)$ via $\sum_{\sigma} A_{i}(\sigma)$.

