Week 5: Assorted Problems

1: Find all integer solutions to $a^{2}+b^{2}+c^{2}=a^{2} b^{2}$.

2: For any $m \in \mathbb{N}$, let $\Phi_{m}(x)$ denote the m-th cyclotomic polynomial. Prove that $\Phi_{420}(69)>\Phi_{69}(420)$.
3: Let $c \in \mathbb{R}$ such that the polynomial $4 x^{3}-3 x+c=0$ has a root in $[-1,1]$. Prove that it has all of its roots in $[-1,1]$.

4: Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x+y)=2 f(x) f(y)$ for all $x, y \in \mathbb{R}$.

5: Let A, B be $n \times n$ matrices with coefficients in \mathbb{R} such that $A B-B A=A$. Prove that A is nilpotent. That is, $A^{k}=0$ for some $k \in \mathbb{N}$.

6: Let G be a group and let H be a subgroup such that for any $a \in G \backslash H$ and any $g \in G$, there exists $b \in H$ such that $g a g^{-1}=b a b^{-1}$. Prove that H is a normal subgroup of G and G / H is abelian.

7: Let v_{1}, \ldots, v_{k} be nonzero vectors in \mathbb{R}^{n} such that $v_{i}^{t} v_{j} \leq 0$ for all $i \neq j$. Prove that $k \leq 2 n$.

8: Let n be a positive integer such that there exists a polynomial $f(x) \in \mathbb{F}_{2}[x]$ of degree n such that $f(x) \cdot x^{n} f(1 / x)=1+x+\cdots+x^{2 n}$ in $\mathbb{F}_{2}[x]$. Prove that the order of $2 \bmod 2 n+1$ (the smallest positive integer d such that $\left.2^{d} \equiv 1(\bmod 2 n+1)\right)$ is odd.

9: Let $\alpha, \beta, \gamma \in \mathbb{C}$ be the three roots of $x^{3}+x+1$. For any $n \in \mathbb{N}$, let $a_{n}=\frac{\left(\alpha^{n}-1\right)\left(\beta^{n}-1\right)\left(\gamma^{n}-1\right)}{(\alpha-1)(\beta-1)(\gamma-1)}$. Prove that $a_{n} \geq 1$ for all $n \geq 1$ with equality exactly when $n=1,2,4,5$.

10: Let p be a prime. Let A and B be two square matrices with complex coefficients such that $A B=B A$ and $A^{p-1}=B^{p}=I$, the identity matrix. Prove that $A+B+I$ is invertible.

11: Let $f:(1, \infty) \rightarrow \mathbb{R}$ be a continuously differentiable function such that $f(x) \leq x^{2} \log x$ and $f^{\prime}(x)>0$ for all $x>1$. Prove that $\int_{1}^{\infty} \frac{1}{f^{\prime}(x)} d x=\infty$.

12: Let $k \in \mathbb{N}$ such that $p=6 k+1$ is prime. Prove that $\binom{3 k}{k} \not \equiv 1(\bmod p)$.

Week 5: Hints

1: Work $\bmod 4$.

2: $\Phi_{m}(x)$ is a product of $\phi(m)$ terms of the form $x-\zeta$ where $|\zeta|=1$.
3: $4 \cos ^{3} \alpha-3 \cos \alpha=\cos (3 \alpha)$.

4: By scaling, we can remove 2.
5: $A^{k} B-B A^{k}=k A^{k}$. The linear operator $L(A)=A B-B A$ has too many distinct eigenvalues.
6: For $u \in H$ and $g \in G$, apply the assumption to $a=g u g^{-1}$ if it does not belong to H,
7: Induct on n.

8: The existence of such a polynomial $f(x)$ is equivalent to requiring that for any irreducible factor of $x^{2 n+1}-1$ besides $x-1$, if α is a root, then $1 / \alpha$ is not a root. What do roots of an irreducible polynomial in $\mathbb{F}_{p}[x]$ look like?

9: Note that a_{n} is a linear combination of $7 n$-th powers. Write down a recursion formula satisfied by a_{n}.

10: Suppose $(A+B+I) v=0$. Prove that $f(B) v=g(B) v=0$ where $f(x)=(x+1)^{p-1}-1$ and $g(x)=x^{p}-1$.

11: Use Cauchy-Schwartz on $\int_{1}^{\infty} \frac{1}{f^{\prime}(x)} d x \cdot \int_{1}^{\infty} \frac{f^{\prime}(x)}{(x \log x)^{2}} d x$. Estimate the second integral by integration by parts.

12: Let $a \in \mathbb{F}_{p}$ be an element of order k. Consider $\sum_{j=1}^{k}\left(1+a^{j}\right)^{3 k}$.

