Week 5: Assorted Problems

- 1: Find all integer solutions to $a^2 + b^2 + c^2 = a^2b^2$.
- **2:** For any $m \in \mathbb{N}$, let $\Phi_m(x)$ denote the *m*-th cyclotomic polynomial. Prove that $\Phi_{420}(69) > \Phi_{69}(420)$.
- **3:** Let $c \in \mathbb{R}$ such that the polynomial $4x^3 3x + c = 0$ has a root in [-1, 1]. Prove that it has all of its roots in [-1, 1].
- **4:** Find all continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that f(x+y) = 2f(x)f(y) for all $x, y \in \mathbb{R}$.
- **5:** Let A, B be $n \times n$ matrices with coefficients in \mathbb{R} such that AB BA = A. Prove that A is nilpotent. That is, $A^k = 0$ for some $k \in \mathbb{N}$.
- 6: Let G be a group and let H be a subgroup such that for any $a \in G \setminus H$ and any $g \in G$, there exists $b \in H$ such that $gag^{-1} = bab^{-1}$. Prove that H is a normal subgroup of G and G/H is abelian.
- **7:** Let v_1, \ldots, v_k be nonzero vectors in \mathbb{R}^n such that $v_i^t v_j \leq 0$ for all $i \neq j$. Prove that $k \leq 2n$.
- 8: Let n be a positive integer such that there exists a polynomial $f(x) \in \mathbb{F}_2[x]$ of degree n such that $f(x) \cdot x^n f(1/x) = 1 + x + \cdots + x^{2n}$ in $\mathbb{F}_2[x]$. Prove that the order of 2 mod 2n + 1 (the smallest positive integer d such that $2^d \equiv 1 \pmod{2n+1}$) is odd.
- **9:** Let $\alpha, \beta, \gamma \in \mathbb{C}$ be the three roots of $x^3 + x + 1$. For any $n \in \mathbb{N}$, let $a_n = \frac{(\alpha^n 1)(\beta^n 1)(\gamma^n 1)}{(\alpha 1)(\beta 1)(\gamma 1)}$. Prove that $a_n \ge 1$ for all $n \ge 1$ with equality exactly when n = 1, 2, 4, 5.
- 10: Let p be a prime. Let A and B be two square matrices with complex coefficients such that AB = BA and $A^{p-1} = B^p = I$, the identity matrix. Prove that A + B + I is invertible.
- **11:** Let $f: (1, \infty) \to \mathbb{R}$ be a continuously differentiable function such that $f(x) \le x^2 \log x$ and f'(x) > 0 for all x > 1. Prove that $\int_1^\infty \frac{1}{f'(x)} dx = \infty$.

12: Let $k \in \mathbb{N}$ such that p = 6k + 1 is prime. Prove that $\binom{3k}{k} \not\equiv 1 \pmod{p}$.

Week 5: Hints

- 1: Work mod 4.
- **2:** $\Phi_m(x)$ is a product of $\phi(m)$ terms of the form $x \zeta$ where $|\zeta| = 1$.
- 3: $4\cos^3\alpha 3\cos\alpha = \cos(3\alpha)$.
- **4:** By scaling, we can remove 2.
- 5: $A^k B BA^k = kA^k$. The linear operator L(A) = AB BA has too many distinct eigenvalues.
- **6:** For $u \in H$ and $g \in G$, apply the assumption to $a = gug^{-1}$ if it does not belong to H,
- **7:** Induct on n.
- 8: The existence of such a polynomial f(x) is equivalent to requiring that for any irreducible factor of $x^{2n+1} 1$ besides x 1, if α is a root, then $1/\alpha$ is not a root. What do roots of an irreducible polynomial in $\mathbb{F}_p[x]$ look like?
- **9:** Note that a_n is a linear combination of 7 *n*-th powers. Write down a recursion formula satisfied by a_n .
- 10: Suppose (A + B + I)v = 0. Prove that f(B)v = g(B)v = 0 where $f(x) = (x + 1)^{p-1} 1$ and $g(x) = x^p 1$.
- 11: Use Cauchy-Schwartz on $\int_{1}^{\infty} \frac{1}{f'(x)} dx \cdot \int_{1}^{\infty} \frac{f'(x)}{(x \log x)^2} dx$. Estimate the second integral by integration by parts.
- **12:** Let $a \in \mathbb{F}_p$ be an element of order k. Consider $\sum_{j=1}^{k} (1+a^j)^{3k}$.