Week 4: Assorted Problems

1: Let a, b, c be real numbers such that $a+b+c=0$. Prove that

$$
\frac{a^{5}+b^{5}+c^{5}}{5}=\frac{a^{3}+b^{3}+c^{3}}{3} \frac{a^{2}+b^{2}+c^{2}}{2}
$$

2: Prove that 2 is a primitive root mod 101. In other words, the smallest positive integer d such that $2^{d} \equiv 1(\bmod 101)$ is 100 .

3: Let $a_{i j}$ be positive real numbers. Prove that

$$
\prod_{i=1}^{k}\left(a_{i 1}+a_{i 2}+\cdots+a_{i n}\right) \geq\left(\sqrt[k]{a_{11} a_{21} \cdots a_{k 1}}+\cdots+\sqrt[k]{a_{1 n} a_{2 n} \cdots a_{k n}}\right)^{k}
$$

4: Let $f(x) \in \mathbb{R}[x]$ be a quadratic polynomial with $|f(-1)| \leq 1,|f(0)| \leq 1,|f(1)| \leq 1$. Prove that for any $|x| \leq 1$, we have $|f(x)| \leq 5 / 4$.

5: Let $S \subseteq \mathbb{R}$ be a subset such that any finite sum of elements in S has absolute value at most 1 . Prove that S is countable.

6: Let D_{1}, \ldots, D_{n} be n disks in \mathbb{R}^{2}. For any i, j, let $a_{i j}$ denote the area of $D_{i} \cap D_{j}$. Prove that for any real numbers x_{1}, \ldots, x_{n}, we have $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j} \geq 0$.

7: Let $n \geq 2$ be an integer. Let $a=n+\sqrt{n^{2}-n}$. Prove that for any positive integer m, we have $\left\lfloor a^{m}\right\rfloor \equiv-1(\bmod n)$. Does there exist an irrational number b such that $\left\lfloor b^{m}\right\rfloor \equiv 0(\bmod n)$ for any positive integer m ?

8: Find the limit $\lim _{n \rightarrow \infty} \sqrt{1+2 \sqrt{1+3 \sqrt{\cdots+(n-1) \sqrt{1+n}}}}$
9: Suppose a, b are positive rational numbers and $n \geq 2$ is an integer such that $\sqrt[n]{a}+\sqrt[n]{b} \in \mathbb{Q}$. Prove that $\sqrt[n]{a} \in \mathbb{Q}$.

10: Consider the sequence defined by $a_{0}=a_{1}=1$ and $a_{n+2}=a_{n+1}+\sum_{k=0}^{n} a_{k} a_{n-k}$ for $n \geq 0$. Prove that $a_{n}=\sum_{k=0}^{\lfloor n / 2\rfloor} \frac{1}{k+1}\binom{2 k}{k}\binom{n}{2 k}$.

11: Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a twice continuously differentiable function such that

$$
\left|f^{\prime \prime}(x)+2 x f^{\prime}(x)+\left(x^{2}+1\right) f(x)\right|
$$

is bounded. Prove that $\lim _{x \rightarrow \infty} f(x)=0$.
12: Prove that there do not exist 22 (distinct) circles C_{1}, \ldots, C_{22} in \mathbb{R}^{2} and 22 (distinct) points P_{1}, \ldots, P_{22} on $C_{1} \cup \cdots \cup C_{22}$ such that every circle C_{i} contains at least 7 points in P_{1}, \ldots, P_{22} and every point P_{i} lies on at least 7 circles C_{1}, \ldots, C_{22}.

Week 4: Hints

1: Bash.
2: Note that $a^{(p-1) / 2}=\left(\frac{a}{p}\right)$.
3: Let $S_{i}=a_{i 1}+\cdots+a_{i n}$. Apply AM-GM to $\sqrt[k]{\frac{a_{1 j} a_{2 j} \cdots a_{k j}}{S_{1} S_{2} \cdots S_{k}}}$ and sum over j.
4: Lagrange interpolation.
5: Consider sets of the form $S \cap(1 / n, \infty)$.
6: Let $\chi_{D_{i}}$ denote the characteristic function of D_{i}. Then $a_{i j}=\int_{\mathbb{R}^{2}} \chi_{D_{i}}(x, y) \chi_{D_{j}}(x, y) d x d y$.
7: Suppose $(x-a)(x-c)=x^{2}+u x+v \in \mathbb{Z}[x]$ with $0<c<1$. Then $\left\lfloor a^{m}\right\rfloor=a^{m}+c^{m}-1$. Use a recurrence relation between $a^{m+2}+c^{m+2}, a^{m+1}+c^{m+1}$ and $a^{m}+c^{m}$ to find it $\bmod n$.

8: Let $a_{m, n}=\sqrt{1+m \sqrt{1+(m+1) \sqrt{\cdots+(n-1) \sqrt{1+n}}}}$. Consider $\left|a_{m, n}-(m+1)\right|$.
9: Let $c=\sqrt[n]{a}+\sqrt[n]{b}$. Prove that $x^{n}-a$ and $(c-x)^{n}-b$ share a unique common root (in \mathbb{C}).
10: Generating functions.
11: Consider $f(x) e^{x^{2} / 2}$.
12: Consider the incidence correspondence $\left(P,\left(C_{i}, C_{j}\right)\right)$ where $P \in C_{i} \cap C_{j}$. Then consider the matrix A whose (i, j)-entry is 1 if $P_{i} \in C_{j}$ and 0 otherwise. What is $A^{t} A$ and what is its determinant?

