Week 4: Assorted Problems

1: Let a, b, c be real numbers such that a + b + c = 0. Prove that

$$\frac{a^5 + b^5 + c^5}{5} = \frac{a^3 + b^3 + c^3}{3} \frac{a^2 + b^2 + c^2}{2}.$$

- **2:** Prove that 2 is a primitive root mod 101. In other words, the smallest positive integer d such that $2^d \equiv 1 \pmod{101}$ is 100.
- **3:** Let a_{ij} be positive real numbers. Prove that

$$\prod_{i=1}^{k} (a_{i1} + a_{i2} + \dots + a_{in}) \ge \left(\sqrt[k]{a_{11}a_{21}\cdots a_{k1}} + \dots + \sqrt[k]{a_{1n}a_{2n}\cdots a_{kn}}\right)^{k}$$

- 4: Let $f(x) \in \mathbb{R}[x]$ be a quadratic polynomial with $|f(-1)| \le 1$, $|f(0)| \le 1$, $|f(1)| \le 1$. Prove that for any $|x| \le 1$, we have $|f(x)| \le 5/4$.
- 5: Let $S \subseteq \mathbb{R}$ be a subset such that any finite sum of elements in S has absolute value at most 1. Prove that S is countable.
- **6:** Let D_1, \ldots, D_n be *n* disks in \mathbb{R}^2 . For any *i*, *j*, let a_{ij} denote the area of $D_i \cap D_j$. Prove that for any real numbers x_1, \ldots, x_n , we have $\sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j \ge 0$.
- 7: Let $n \ge 2$ be an integer. Let $a = n + \sqrt{n^2 n}$. Prove that for any positive integer m, we have $\lfloor a^m \rfloor \equiv -1 \pmod{n}$. Does there exist an irrational number b such that $\lfloor b^m \rfloor \equiv 0 \pmod{n}$ for any positive integer m?
- 8: Find the limit $\lim_{n \to \infty} \sqrt{1 + 2\sqrt{1 + 3\sqrt{\dots + (n-1)\sqrt{1+n}}}}$.
- 9: Suppose a, b are positive rational numbers and $n \ge 2$ is an integer such that $\sqrt[n]{a} + \sqrt[n]{b} \in \mathbb{Q}$. Prove that $\sqrt[n]{a} \in \mathbb{Q}$.

10: Consider the sequence defined by $a_0 = a_1 = 1$ and $a_{n+2} = a_{n+1} + \sum_{k=0}^{n} a_k a_{n-k}$ for $n \ge 0$. Prove that

$$a_n = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{1}{k+1} \binom{2k}{k} \binom{n}{2k}.$$

11: Let $f:(0,\infty)\to\mathbb{R}$ be a twice continuously differentiable function such that

$$|f''(x) + 2xf'(x) + (x^2 + 1)f(x)|$$

is bounded. Prove that $\lim_{x\to\infty} f(x) = 0$.

12: Prove that there do not exist 22 (distinct) circles C_1, \ldots, C_{22} in \mathbb{R}^2 and 22 (distinct) points P_1, \ldots, P_{22} on $C_1 \cup \cdots \cup C_{22}$ such that every circle C_i contains at least 7 points in P_1, \ldots, P_{22} and every point P_i lies on at least 7 circles C_1, \ldots, C_{22} .

Week 4: Hints

1: Bash.

2: Note that $a^{(p-1)/2} = \left(\frac{a}{p}\right)$.

3: Let $S_i = a_{i1} + \dots + a_{in}$. Apply AM-GM to $\sqrt[k]{\frac{a_{1j}a_{2j}\cdots a_{kj}}{S_1S_2\cdots S_k}}$ and sum over j.

- 4: Lagrange interpolation.
- **5:** Consider sets of the form $S \cap (1/n, \infty)$.
- **6:** Let χ_{D_i} denote the characteristic function of D_i . Then $a_{ij} = \int_{\mathbb{R}^2} \chi_{D_i}(x, y) \chi_{D_j}(x, y) dx dy$.
- 7: Suppose $(x-a)(x-c) = x^2 + ux + v \in \mathbb{Z}[x]$ with 0 < c < 1. Then $\lfloor a^m \rfloor = a^m + c^m 1$. Use a recurrence relation between $a^{m+2} + c^{m+2}$, $a^{m+1} + c^{m+1}$ and $a^m + c^m$ to find it mod n.

8: Let
$$a_{m,n} = \sqrt{1 + m\sqrt{1 + (m+1)\sqrt{\dots + (n-1)\sqrt{1+n}}}}$$
. Consider $|a_{m,n} - (m+1)|$.

- **9:** Let $c = \sqrt[n]{a} + \sqrt[n]{b}$. Prove that $x^n a$ and $(c x)^n b$ share a unique common root (in \mathbb{C}).
- 10: Generating functions.
- **11:** Consider $f(x)e^{x^2/2}$.
- 12: Consider the incidence correspondence $(P, (C_i, C_j))$ where $P \in C_i \cap C_j$. Then consider the matrix A whose (i, j)-entry is 1 if $P_i \in C_j$ and 0 otherwise. What is A^tA and what is its determinant?