Week 3: Assorted Problems

1: Let $a>1$ be an integer. Prove that there exist positive integers b, c such that $a^{2}+b^{2}=c^{2}$.
2: Let $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ be two sequences of real numbers such that $b_{n} \neq 0$ and $a_{n}+b_{n} \neq 0$ for all $n \in \mathbb{N}$. Suppose the series $\sum_{n=1}^{\infty} \frac{a_{n}}{b_{n}}$ and $\sum_{n=1}^{\infty} \frac{a_{n}^{2}}{b_{n}^{2}}$ converge. Prove that the series $\sum_{n=1}^{\infty} \frac{a_{n}}{a_{n}+b_{n}}$ converges.

3: Let $A=\left\{(x, y) \in \mathbb{R}^{2}: x=0\right.$ or $\left.y=0\right\}$ equipped with the subspace topology from \mathbb{R}^{2}. Let $f: \mathbb{R} \rightarrow A$ be a surjective and continuous map. Prove that $f^{-1}((0,0))$ is infinite.

4: Let A be a 3×2 matrix and let B be a 2×3 matrix with complex coefficients such that

$$
A B=\left(\begin{array}{ccc}
8 & 2 & -2 \\
2 & 5 & 4 \\
-2 & 4 & 5
\end{array}\right)
$$

Find $B A$.

5: For any subset $S \subseteq \mathbb{N}$, we write $S \oplus S=\{a+b: a, b \in S, a \neq b\}$. Prove that there exist a unique partition of \mathbb{N} into (disjoint subsets) A and B such that neither of $A \oplus A$ and $B \oplus B$ contains a prime.

6: Prove that if $f: \mathbb{N} \rightarrow \mathbb{N}$ is a function satisfying $a f(b)+b(a)=(a+b) f(a b+a+b)$ for all $a, b \in \mathbb{N}$, then f is a constant function.

7: Find the largest $n \in \mathbb{N}$ such that whenever $a_{1}, \ldots, a_{7} \in\{1,2, \ldots, n\}$, there exist distinct $S, T \subseteq$ $\{1,2, \ldots, 7\}$ such that $\sum_{i \in S} a_{i}=\sum_{j \in T} a_{j}$.

8: A fair die is rolled repeatedly and independently. Let X be the number of times the die is rolled until the pattern 11 appears. Let Y be the number of times the die is rolled until the pattern 12 appears. Find the expected values of X and Y.

9: Let $k \in \mathbb{N}$ and let $L_{k}=\operatorname{lcm}(1,2, \ldots, k)$. Let $n \in \mathbb{N}$ with $n \geq k+L_{k}$. Prove that $\binom{n}{k}$ is divisible by $\prod_{i=0}^{k-1} \frac{n-i}{\operatorname{gcd}\left(n-i, L_{k}\right)}$ and conclude that $\binom{n}{k}$ has at least k distinct prime divisors.

10: Suppose the set $\mathbb{Z}_{\geq 0}$ of non-negative integers is partitioned into finitely many arithmetic progressions of the form $a_{i} \mathbb{Z}_{\geq 0}+b_{i}$ with $i=1, \ldots, n, b_{i} \geq 0$ and $1 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n}$. Prove that $a_{n}=a_{n-1}$.

11: Let $n \in \mathbb{N}$ and let $x_{i j} \in[0,1]$ for $i, j=1, \ldots, n$. Prove that

$$
\prod_{j=1}^{n}\left(1-\prod_{i=1}^{n} x_{i j}\right)+\prod_{i=1}^{n}\left(1-\prod_{j=1}^{n}\left(1-x_{i j}\right)\right) \geq 1
$$

12: Let a, b be coprime integers at least 2 . Prove that there are infinitely many primes p such that the p-adic valuation $\nu_{p}\left(a^{p-1}-b^{p-1}\right)$ is odd.

Week 3: Hints

1: Split into two cases: a is odd and a is even.
2: Let $c_{n}=a_{n} / b_{n}$. Express $\frac{a_{n}}{a_{n}+b_{n}}$ in terms of c_{n}.
3: Suppose for a contradiction that it is bounded. Let a and b be the minimum and maximum of $f^{-1}((0,0))$. What can $f((-\infty, a)), f([a, b])$ and $f((b, \infty))$ be?

4: Compute $(A B)^{2}$.

5: It shouldn't be hard to guess what A and B should be.
6: Suppose $f(a)<f(b)$, then $f(a)<f(a b+a+b)<f(b)$.

7 :

8: Let Z be the number of times for the first 1. Then $E(X)=\frac{1}{6}(E(Z)+1)+\frac{5}{6}(E(Z)+1+E(X))$. Let W be the number of times for the first non-1. Relate Y to Z and W similarly.

9: Do some estimates with ν_{p}.
10: Generating functions!

11: Let $x_{i j}$ be the probability that the (i, j)-entry of a random $n \times n$ matrix is 1 and let $1-x_{i j}$ be the probability that it is 0 .

12: Consider prime divisors of $x^{2^{k-1}}+y^{2^{k-1}}$.

