Week 2: Assorted Problems

1: Let a, b be integers such that $\operatorname{gcd}(a, b)=1$. Prove that $\operatorname{gcd}(a+b, a b)=1$.
2: Find all primes p for which $\left(2^{p-1}-1\right) / p$ is a square.
3: Suppose $x, y, z \geq 0$. Prove that $\frac{x^{3}+y^{3}+z^{3}}{3} \geq x y z+\frac{3}{4}|(x-y)(y-z)(x-z)|$.
4: Consider the sequence $\left(a_{n}\right)$ of real numbers defined by $a_{0}=-1$ and $\sum_{k=0}^{n} \frac{a_{n-k}}{k+1}=0$. Prove that $a_{n}>0$ for all $n \geq 1$.

5: Let k be a fixed positive integer. Let $a_{0}=0$ and $a_{n+1}=k a_{n}+\sqrt{\left(k^{2}-1\right) a_{n}^{2}+1}$ for $n \geq 0$. Prove that $\frac{a_{n}}{2 k} \in \mathbb{Z}$ for every $n \geq 0$.

6: Let $0<r<2$ be a real number. Define $I(t)=\int_{0}^{\infty} \frac{1-\cos (t x)}{x^{r+1}} d x$.
(a) Prove that $I(t)=|t|^{r} I(1)$ for every $t \in \mathbb{R}$.
(b) Prove that for any real numbers t_{1}, \ldots, t_{n}, and any $r \in[0,2]$, we have $\sum_{i, j}\left|t_{i}-t_{j}\right|^{r} \leq \sum_{i, j}\left|t_{i}+t_{j}\right|^{r}$.

7: An irrational number in $(0,1)$ is funny if its first four decimal digits are the same. For example, $0.1111+e / 100000$ is funny. Prove that 0.1111 is not a sum of 1111 funny numbers and every number $x \in(0,1)$ can be written as a sum of 1112 distinct funny numbers.

8: A subset of k elements of the set $\{1,2, \ldots, 2022\}$ is selected randomly. Prove that the probabilities that the sum of the elements of the selected subset is congruent to 0 or 1 or $2 \bmod 3$ are the same if and only if $k \equiv 1$ or $2 \bmod 3$.

9: Prove that there does not exist a rational number $\alpha \in(0,1)$ such that $\cos (\pi \alpha)=\frac{-1+\sqrt{17}}{4}$.
10: Let a be a fixed positive integer. Prove that the equation $n!=a^{b}-1$ has only finitely many solutions in positive integers n, b.

11: Prove that $\lim _{n \rightarrow \infty} I_{n}$ exists where $I_{n}=\int_{[0,1]^{n}} \frac{n}{\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}} d x_{1} \cdots d x_{n}$.
12: Find all functions $f: \mathbb{N} \rightarrow \mathbb{Z}$ such that $f(a) \geq f(b)$ whenever $a \mid b$ and that for all $a, b \in \mathbb{N}$, $f(a b)+f\left(a^{2}+b^{2}\right)=f(a)+f(b)$.

Week 2: Hints

1: What could a prime common divisor of $a+b$ and $a b$ be?

2: Consider $p \equiv 1(\bmod 4)$ and $p \equiv 3(\bmod 4)$ separately.

3: A bunch of AM-GM.

4: Proof by induction. Express a_{n+1} as a positive combination of a_{1}, \ldots, a_{n}.

5: Prove that $a_{n+2}-a_{n}=2 k a_{n+1}$.

6: For (b), $\cos (a-b)+\cos (a+b)=2 \sin a \sin b$.

7: Find the largest 0.uuuu less than x, subtract and divide by 1112. Then adjust them to be irrational.

8: Let ω be the primitive cube root of unity. Consider the X^{k}-coefficient of $P(X)=(1+X \omega)(1+$ $\left.X \omega^{2}\right) \cdots\left(1+X \omega^{2022}\right)$.

9: Prove that the numbers of the form $\cos \left(2^{n} \pi \alpha\right)$ are all distinct. (Using the theory of cyclotomic extensions, one can show that the algebraic number $\cos (2 \pi m / n)$ where $\operatorname{gcd}(m, n)=1$ has degree $\phi(n) / 2$.)

10: By the lifting exponent lemma $\nu_{p}\left(a^{b}-1\right) \leq \nu_{p}\left(a^{p-1}-1\right)+\nu_{p}(b)$.

11: Let $J_{n}=n I_{n}$. Prove that $J_{m+n} \leq J_{m}+J_{n}$.

12: Prove that $f(n)$ depends only on the prime divisors of n that are $3 \bmod 4$.

