Week 1: Assorted Problems

1: Suppose $\sin \left(1+\cos ^{2} \alpha+\sin ^{4} \alpha\right)=\frac{13}{14}$. Find $\cos \left(1+\sin ^{2} \alpha+\cos ^{4} \alpha\right)$.

2: Evaluate $\sum_{k=1}^{2023} \frac{k}{k^{4}+k^{2}+1}$.
3: Prove that there does not exist a non-constant rational function $f(x)$ (quotient of two polynomials) with coefficients in \mathbb{R} such that $f\left(\frac{x^{2}}{x+1}\right)$ is a polynomial with coefficients in \mathbb{R}.

4: Prove that there exists an (countably) infinite square matrix such that every row and column contains every positive integer exactly once.

5: Let r_{1}, \ldots, r_{2023} be the 2023 (complex) roots of $2024 x^{2023}+2023 x^{2022}+\cdots+2 x+1$. Compute $\sum_{i=1}^{2023} \frac{1}{\left(1-r_{i}\right)^{2}}$.

6: Evaluate $\int_{-1}^{1} \frac{x^{2}}{1-2^{x}} d x$.
7: Suppose $f:[0,1] \rightarrow \mathbb{R}$ is a function that is continuous on $(0,1]$. Let $a, b>0$. Prove that $\lim _{x \rightarrow 0^{+}} \frac{1}{x^{a}} \int_{0}^{x} t^{a-1} f(t) d t$ exists if and only if $\lim _{x \rightarrow 0^{+}} \frac{1}{x^{b}} \int_{0}^{x} t^{b-1} f(t) d t$ exists.

8: Let $f(x)$ be a non-constant polynomial with integer coefficients. For any $n \in \mathbb{N}$, let a_{n} be the remainder when $f\left(3^{n}\right)$ is divided by n. Prove that the sequence $\left(a_{n}\right)_{n \geq 1}$ is unbounded.

9: Let $n \geq 2$ be an integer. Prove that the number of n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ of positive integers such that $\left(a_{1}!-1\right) \cdots\left(a_{n}!-1\right)-16$ is a perfect square, is $n(n-1) / 2$.

10: Prove that for all integers a, b with $b \neq 0$, there exists a positive integer n such that $\nu_{2}(n!) \equiv a$ $(\bmod b)$, where $\nu_{p}(m)$ for a prime p and an integer m is the largest integer d such that $p^{d} \mid m$.

11: Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of positive integers such that $\operatorname{gcd}\left(a_{m}, a_{n}\right)=a_{\operatorname{gcd}(m, n)}$ for any $m, n \in \mathbb{N}$. Prove that there exists a (unique) sequence of positive integers $\left(b_{n}\right)_{n \geq 1}$ such that $a_{n}=\prod_{d \mid n} b_{d}$ for all $n \in \mathbb{N}$.

12: Let $f(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable function with continuous partial derivatives. Prove that there exist continuous functions $g_{1}(x, y), g_{2}(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f(x, y)=x g_{1}(x, y)+y g_{2}(x, y)$.

1: $1+\cos ^{2} \alpha+\sin ^{4} \alpha=1+\sin ^{2} \alpha+\cos ^{4} \alpha$. Be careful with the sign.

2: $k^{4}+k^{2}+1=\left(k^{2}+k+1\right)\left(k^{2}-k+1\right)$.

3: Write $f(x)=a(x) / b(x)$ and factor over \mathbb{C}.

4: Inductively construct a $2^{n} \times 2^{n}$ matrix such that every row and column contains $1,2, \ldots, 2^{n}$ exactly once.

5: Find a polynomial that has $1 /\left(1-r_{i}\right)$ as roots.

6: Let $u=-x$.
7: Let $F(x)=\int_{0}^{x} t^{a-1} f(t) d t$. Then $t^{b-1} f(t)=t^{b-a} F^{\prime}(t)$. Integration by part.
8: For any fixed $m \in \mathbb{N}$ and large enough prime $p, f\left(3^{p m}\right) \equiv f\left(3^{m}\right)(\bmod p)$.
9: Prove that $a_{i} \in\{2,3\}$.
10: Legendre's formula gives $\nu_{p}(m)=\left(m-s_{p}(m)\right) /(p-1)$ where $s_{p}(m)$ is the sum of the digits of n when written in base p. So the problem reduces to finding a positive integer k and positive integers $x_{1}<\cdots<x_{k}$ such that $2^{x_{1}}-1+\cdots+2^{x_{k}}-1 \equiv a(\bmod b)$.

11: Mobius inversion forces $b_{n}=\prod_{d \mid n} a_{n / d}^{\mu(d)}$ where μ is the Mobius function. Prove that $b_{n} \in \mathbb{Z}$ by showing that $b_{n}=a_{n} / \operatorname{lcm}\left(a_{n / p_{1}}, \ldots, a_{n / p_{r}}\right)$ where p_{1}, \ldots, p_{r} are the prime divisors of n.

12: FTC gives $f(x, y)-f(0,0)=\int_{0}^{x} \frac{\partial f}{\partial x}(s, 0) d s+\int_{0}^{y} \frac{\partial f}{\partial y}(x, t) d t$. Then substitute $s=x \sigma$ and $t=y \tau$.

