Week 7: Assorted Problems

1: Prove that for any integer $n>1, n^{5}+n^{4}+1$ is not prime.
2: Let a be a real number such that $5\left(\sin ^{3} a+\cos ^{3} a\right)+3 \sin a \cos a=0.04$. Prove that $5(\sin a+\cos a)+$ $2 \sin a \cos a=0.04$.

3: Prove that $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{1}{k+m+1}=\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} \frac{1}{k+n+1}$.
4: Find all positive integer solutions to $x!+y!+z!=2^{w}$.
5: Prove that $\lim _{n \rightarrow \infty} \sum_{k=0}^{n}\binom{n}{k}^{-1}=2$.
6: Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that $h(3 x)+h(2 x)+h(x)=0$ for all $x \in \mathbb{R}$. Prove that $h=0$.

7: Prove that for any integer $n \geq 3$, there exist odd integers x, y such that $2^{n}=7 x^{2}+y^{2}$.
8: Given a set of positive real numbers such that the sum of the pairwise products is 1 , prove that it is possible to remove one number so that the sum of the remaining numbers is less than $\sqrt{2}$.

9: Let A, B, C be $n \times n$ matrices with complex coefficients such that $A C B=x A+y B$ for some nonzero $x, y \in \mathbb{C}$. Prove that $A C B=B C A$.

10: Let $p(x)$ be a polynomial with integer coefficients such that $p(n)>n$ for every positive integer n. Define a sequence by $x_{1}=1$ and $x_{i+1}=p\left(x_{i}\right)$ for $i \geq 1$. Suppose for any positive integer m, there exists some r such that $m \mid x_{r}$. Prove that $p(x)=x+1$.

11: Prove that the equation $\frac{x^{7}-1}{x-1}=y^{5}-1$ has no integer solutions.

12: Prove the (in)famous 1988 IMO problem by induction on $a b$: Let a and b be positive integers, and suppose $q=\frac{a^{2}+b^{2}}{a b+1}$ is an integer. Then $q=\operatorname{gcd}(a, b)^{2}$.

Week 7: Hints

1: $n^{2}+n+1 \mid n^{5}+n^{4}+1$.
2: $x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left((x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right)$.
3: $\frac{1}{k+m+1}=\int_{0}^{1} x^{k+m} d x$.
4: Suppose $x \leq y \leq z$ and do a bunch of basic case analysis.
5: Prove that $\sum_{k=0}^{n}\binom{n}{k}^{-1}=2+O\left(\frac{1}{n}\right)$.
6: Prove that for any $\epsilon>0,\left|\frac{h(t)}{t}\right|<\epsilon$ for all $t \neq 0$.
7: Consider $7(x \pm y)^{2}+(7 x \mp y)^{2}$.
8: $a_{1}\left(S-a_{1}\right)+\cdots+a_{n}\left(S-a_{n}\right) \geq \min \left\{S-a_{i}\right\} \cdot S$, where $S=a_{1}+a_{2}+\ldots+a_{n}$.
9: Multiply by C on the right and factor.

10: Prove that $x_{n+1}-x_{1} \mid x_{i}$ for some $i=1, \ldots, n$.

11: Prove that any prime divisor of the LHS is 0 or $1 \bmod 7$.

12: Suppose $a \leq b$ and let $c=a q-b$.

