Week 6: Assorted Problems

- 1: Let $a, b, c \in \mathbb{C}$ be such that a + b + c = 0 and |a| = |b| = |c|. Prove that $a^3 = b^3 = c^3$.
- **2:** Prove that for |x| > 1, $\sum_{n=0}^{\infty} \frac{2^n}{1+x^{2^n}} = \frac{1}{x-1}$.
- **3:** Let p be an odd prime and let a_1, \ldots, a_p be an arithmetic progression whose common difference is not divisible by p. Prove that there exists $i = 1, \ldots, p$ such that $a_1 a_2 \cdots a_p + a_i$ is divisible by p^2 .

4: Let a, b be elements of a finite ring such that $ab^2 = b$. Prove that bab = b.

5: Find all continuous functions $f: [0,1] \to \mathbb{R}$ such that $\int_0^1 f(x) \, dx = \frac{1}{3} + \int_0^1 f(x^2)^2 \, dx$.

6: Compute $\int_0^{\pi} \frac{\sin nx}{\sin x} dx$ for any integer *n*.

- 7: Prove that $\lim_{n \to \infty} n^2 \int_0^{\frac{1}{n}} x^{x+1} dx = \frac{1}{2}$.
- 8: Let N be the number of integer solutions to the equation $x^3 y^3 = z^4 w^4$ with the property that $0 \le x, y, z, w \le 2022^{2022}$. Let M be the number of integer solutions to the equation $x^3 y^3 = z^4 w^4 + 1$ with the property that $0 \le x, y, z, w \le 2022^{2022}$. Prove that N > M.
- **9:** A disk of radius R is covered by m rectangular stripes of width 2. Prove that $m \ge R$.
- 10: Prove that there exist integers a, b such that b > a + 1 and that for any integer $k = a + 1, a + 2, \ldots, b 1$, either gcd(a, k) > 1 or gcd(b, k) > 1.
- 11: (Gelfand's Formula) For any $n \times n$ matrix A with complex coefficients, we define its spectral radius $\rho(A)$ to be the maximum of the absolute value of its eigenvalues. Prove that for any norm ||.|| on $M_n(\mathbb{C}) \simeq \mathbb{C}^{n^2}$ (which are all equivalent), $\rho(A) = \lim_{k \to \infty} ||A^k||^{\frac{1}{k}}$.
- 12: For any positive integer n, let f(n) be the number of permutations a_1, \ldots, a_n of $1, \ldots, n$ such that $a_1 = 1$ and $|a_i a_{i+1}| \le 2$ for $i = 2, \ldots, n-1$. Find $f(2022) \mod 3$.

Week 6: Hints

1: WLOG
$$a = 1, b = e^{i\beta}, c = e^{i\gamma}$$
.

$$2: \sum_{n=0}^{m} \frac{2^n}{1+x^{2^n}} = \frac{1}{x-1} + \frac{2^{m+1}}{1-x^{2^{m+1}}}$$

3: a_1, \ldots, a_p take all possible values mod p. Use Wilson's Theorem.

- **4:** Prove that $b = b^k$ for some k > 1.
- **5:** Consider $\int_0^1 (x f(x^2))^2 dx$.

6: Let
$$I_n = \int_0^\pi \frac{\sin nx}{\sin x} dx$$
. Prove that $I_{n+2} = I_n$.

7: Prove that
$$\lim_{n \to \infty} n^2 \int_0^{\frac{1}{n}} (x^{x+1} - x) \, dx = 0$$

- 8: Let a_i be the number of integers (s,t) with $0 \le s,t \le 2022^{2022}$ such that $s^3 + t^4 = i$. Express N and M in terms of the a_i 's.
- **9:** Move to the sphere. Prove that the surface area of the part of the sphere of radius R bounded within two parallel planes of distance d is equal to $2\pi Rd$.
- **10:** b a 1 should have two distinct prime factors.
- **11:** Prove (using Jordan blocks) that $\rho(A) < 1$ if and only if $\lim A^k = 0$.
- 12: Let g(n) be the number of these permutations with $a_n = n$. Let h(n) = f(n) g(n). Find recursion formula about g(n) and h(n).