Week 6: Assorted Problems

1: Let $a, b, c \in \mathbb{C}$ be such that $a+b+c=0$ and $|a|=|b|=|c|$. Prove that $a^{3}=b^{3}=c^{3}$.
2: Prove that for $|x|>1, \sum_{n=0}^{\infty} \frac{2^{n}}{1+x^{2^{n}}}=\frac{1}{x-1}$.

3: Let p be an odd prime and let a_{1}, \ldots, a_{p} be an arithmetic progression whose common difference is not divisible by p. Prove that there exists $i=1, \ldots, p$ such that $a_{1} a_{2} \cdots a_{p}+a_{i}$ is divisible by p^{2}.

4: Let a, b be elements of a finite ring such that $a b^{2}=b$. Prove that $b a b=b$.
5: Find all continuous functions $f:[0,1] \rightarrow \mathbb{R}$ such that $\int_{0}^{1} f(x) d x=\frac{1}{3}+\int_{0}^{1} f\left(x^{2}\right)^{2} d x$.
6: Compute $\int_{0}^{\pi} \frac{\sin n x}{\sin x} d x$ for any integer n.
7: Prove that $\lim _{n \rightarrow \infty} n^{2} \int_{0}^{\frac{1}{n}} x^{x+1} d x=\frac{1}{2}$.
8: Let N be the number of integer solutions to the equation $x^{3}-y^{3}=z^{4}-w^{4}$ with the property that $0 \leq x, y, z, w \leq 2022^{2022}$. Let M be the number of integer solutions to the equation $x^{3}-y^{3}=$ $z^{4}-w^{4}+1$ with the property that $0 \leq x, y, z, w \leq 2022^{2022}$. Prove that $N>M$.

9: A disk of radius R is covered by m rectangular stripes of width 2 . Prove that $m \geq R$.

10: Prove that there exist integers a, b such that $b>a+1$ and that for any integer $k=a+1, a+$ $2, \ldots, b-1$, either $\operatorname{gcd}(a, k)>1$ or $\operatorname{gcd}(b, k)>1$.

11: (Gelfand's Formula) For any $n \times n$ matrix A with complex coefficients, we define its spectral radius $\rho(A)$ to be the maximum of the absolute value of its eigenvalues. Prove that for any norm $\|$.$\| on$ $M_{n}(\mathbb{C}) \simeq \mathbb{C}^{n^{2}}($ which are all equivalent $), \rho(A)=\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{\frac{1}{k}}$.

12: For any positive integer n, let $f(n)$ be the number of permutations a_{1}, \ldots, a_{n} of $1, \ldots, n$ such that $a_{1}=1$ and $\left|a_{i}-a_{i+1}\right| \leq 2$ for $i=2, \ldots, n-1$. Find $f(2022) \bmod 3$.

Week 6: Hints

1: WLOG $a=1, b=e^{i \beta}, c=e^{i \gamma}$.
2: $\sum_{n=0}^{m} \frac{2^{n}}{1+x^{2^{n}}}=\frac{1}{x-1}+\frac{2^{m+1}}{1-x^{2^{m+1}}}$.
3: a_{1}, \ldots, a_{p} take all possible values mod p. Use Wilson's Theorem.
4: Prove that $b=b^{k}$ for some $k>1$.
5: Consider $\int_{0}^{1}\left(x-f\left(x^{2}\right)\right)^{2} d x$.
6: Let $I_{n}=\int_{0}^{\pi} \frac{\sin n x}{\sin x} d x$. Prove that $I_{n+2}=I_{n}$.

7: Prove that $\lim _{n \rightarrow \infty} n^{2} \int_{0}^{\frac{1}{n}}\left(x^{x+1}-x\right) d x=0$.
8: Let a_{i} be the number of integers (s, t) with $0 \leq s, t \leq 2022^{2022}$ such that $s^{3}+t^{4}=i$. Express N and M in terms of the a_{i} 's.

9: Move to the sphere. Prove that the surface area of the part of the sphere of radius R bounded within two parallel planes of distance d is equal to $2 \pi R d$.

10: $b-a-1$ should have two distinct prime factors.

11: Prove (using Jordan blocks) that $\rho(A)<1$ if and only if $\lim A^{k}=0$.

12: Let $g(n)$ be the number of these permutations with $a_{n}=n$. Let $h(n)=f(n)-g(n)$. Find recursion formula about $g(n)$ and $h(n)$.

