Week 5: Assorted Problems

- 1: Prove that there exist arithmetic progressions of arbitrary length consisting of pairwise coprime integers.
- **2:** Let p be a prime and suppose $1 \le k \le p-1$. Find the number of k-element subset $\{a_1, \ldots, a_k\}$ of $\{1, \ldots, p\}$ such that $a_1 + a_2 + \cdots + a_k \equiv 0 \pmod{p}$.
- 3: Prove that 2002^{2002} can be written as a sum of 4 cubes but not a sum of 3 cubes.
- **4:** Prove that every integer can be written in the form $\pm 1^2 \pm 2^2 \pm \cdots \pm m^2$ infinitely many ways.
- **5:** Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that $f(x+y) + f(y+z) + f(z+x) \ge 3f(x+2y+3z)$ for all $x, y, z \in \mathbb{R}$.
- **6:** Let f be a continuous function such that $\lim_{x\to\infty} f(x)$ exists. Let a,b be positive real numbers. Evaluate the Frullani integral $\int_0^\infty \frac{f(ax) f(bx)}{x} dx$.
- 7: Find the expected value of the square of the distance between two randomly chosen points on the unit sphere.
- 8: Suppose P_1, P_2, P_3, P_4 are 4 distinct points on the hyperbola xy = 1 with x-coordinates x_1, x_2, x_3, x_4 . Suppose P_1, P_2, P_3, P_4 also lie on a circle. Prove that $x_1x_2x_3x_4 = 1$.
- **9:** Consider positive real numbers x_1, x_2, \ldots, x_n with $x_1 x_2 \cdots x_n = 1$. Prove that

$$\sum_{i=1}^{n} \frac{1}{n-1+x_i} \le 1.$$

- **10:** Let p be a prime. Let A be a $p \times p$ matrix whose (i, j)-coordinate is $\binom{i+j-2}{i-1}$. Prove that $A^3 \equiv I \pmod{p}$.
- 11: Let a_n denote the exponent of 2 in the numerator of $\sum_{i=1}^n \frac{2^i}{i}$ when written in the lowest form. For example, $a_1=1, a_2=2, a_3=2, a_4=5$. Prove that $\lim_{n\to\infty} a_n=\infty$.
- **12:** Suppose $f: \mathbb{R} \to \mathbb{R}$ is a function such that for any fixed $y \in \mathbb{R}$, f(x+y) f(x) is a polynomial in x. Prove that f is a polynomial.

Week 5: Hints

1: Factorials should show up somewhere.

2:
$$(a_1 + c) + \cdots + (a_k + c) \equiv ck \pmod{p}$$
.

$$3: 2002 = 10^3 + 10^3 + 1^3 + 1^3.$$

4:
$$(m+1)^2 - (m+2)^2 - (m+3)^2 + (m+4)^2 = 4$$
.

5: Try values of x, y, z to make as many terms f(0) as possible.

6:
$$\frac{f(ax) - f(bx)}{x} = \int_{b}^{a} f'(xt) dt$$
.

7: The line joining x and y and the line joining x and -y are perpendicular.

8: There exist real numbers A, B, C such that $x_i^2 + \frac{1}{x_i^2} + Ax_i + \frac{B}{x_i} + C = 0$ for i = 1, 2, 3, 4.

9: Prove
$$\frac{x_i}{n-1+x_i} \ge \frac{x_i^{1-1/n}}{x_1^{1-1/n} + \dots + x_n^{1-1/n}}$$
.

10:

11: The series equals $-\log(1-x)$ when x=2 in \mathbb{Z}_2 .

12: Consider f(x+y+z) - f(x+y) - f(x+z) - f(x) in two ways.