Week 5: Assorted Problems

1: Prove that there exist arithmetic progressions of arbitrary length consisting of pairwise coprime integers.

2: Let p be a prime and suppose $1 \leq k \leq p-1$. Find the number of k-element subset $\left\{a_{1}, \ldots, a_{k}\right\}$ of $\{1, \ldots, p\}$ such that $a_{1}+a_{2}+\cdots+a_{k} \equiv 0(\bmod p)$.

3: Prove that 2002^{2002} can be written as a sum of 4 cubes but not a sum of 3 cubes.
4: Prove that every integer can be written in the form $\pm 1^{2} \pm 2^{2} \pm \cdots \pm m^{2}$ infinitely many ways.

5: Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x+y)+f(y+z)+f(z+x) \geq 3 f(x+2 y+3 z)$ for all $x, y, z \in \mathbb{R}$.

6: Let f be a continuous function such that $\lim _{x \rightarrow \infty} f(x)$ exists. Let a, b be positive real numbers. Evaluate the Frullani integral $\int_{0}^{\infty} \frac{f(a x)-f(b x)}{x} d x$.

7: Find the expected value of the square of the distance between two randomly chosen points on the unit sphere.

8: Suppose $P_{1}, P_{2}, P_{3}, P_{4}$ are 4 distinct points on the hyperbola $x y=1$ with x-coordinates $x_{1}, x_{2}, x_{3}, x_{4}$. Suppose $P_{1}, P_{2}, P_{3}, P_{4}$ also lie on a circle. Prove that $x_{1} x_{2} x_{3} x_{4}=1$.

9: Consider positive real numbers $x_{1}, x_{2}, \ldots, x_{n}$ with $x_{1} x_{2} \cdots x_{n}=1$. Prove that

$$
\sum_{i=1}^{n} \frac{1}{n-1+x_{i}} \leq 1
$$

10: Let p be a prime. Let A be a $p \times p$ matrix whose (i, j)-coordinate is $\binom{i+j-2}{i-1}$. Prove that $A^{3} \equiv I$ $(\bmod p)$.

11: Let a_{n} denote the exponent of 2 in the numerator of $\sum_{i=1}^{n} \frac{2^{i}}{i}$ when written in the lowest form. For example, $a_{1}=1, a_{2}=2, a_{3}=2, a_{4}=5$. Prove that $\lim _{n \rightarrow \infty} a_{n}=\infty$.

12: Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that for any fixed $y \in \mathbb{R}, f(x+y)-f(x)$ is a polynomial in x. Prove that f is a polynomial.

Week 5: Hints

1: Factorials should show up somewhere.
2: $\left(a_{1}+c\right)+\cdots+\left(a_{k}+c\right) \equiv c k(\bmod p)$.
3: $2002=10^{3}+10^{3}+1^{3}+1^{3}$.
4: $(m+1)^{2}-(m+2)^{2}-(m+3)^{2}+(m+4)^{2}=4$.

5: Try values of x, y, z to make as many terms $f(0)$ as possible.
6: $\frac{f(a x)-f(b x)}{x}=\int_{b}^{a} f^{\prime}(x t) d t$.
7: The line joining x and y and the line joining x and $-y$ are perpendicular.
8: There exist real numbers A, B, C such that $x_{i}^{2}+\frac{1}{x_{i}^{2}}+A x_{i}+\frac{B}{x_{i}}+C=0$ for $i=1,2,3,4$.
9: Prove $\frac{x_{i}}{n-1+x_{i}} \geq \frac{x_{i}^{1-1 / n}}{x_{1}^{1-1 / n}+\cdots+x_{n}^{1-1 / n}}$.
$10:$

11: The series equals $-\log (1-x)$ when $x=2$ in \mathbb{Z}_{2}.
12: Consider $f(x+y+z)-f(x+y)-f(x+z)-f(x)$ in two ways.

