Week 4: Assorted Problems

1: Prove that the equation $8 x^{4}+4 y^{4}+2 z^{4}=w^{4}$ has no positive integer solutions.
2: Chooise n numbers x_{1}, \ldots, x_{n} uniformly and independently from $[0,1]$. Find the expected value of $\max _{1 \leq i \leq n} x_{i}-\min _{1 \leq i \leq n} x_{i}$.

3: Prove that a convex polygon in the plane with a prime number of sides, all angles equal, and all sides of rational length, must be regular (i.e., all sides also have equal length).

4: Prove that for any positive integer a, the last digit of $a^{a^{a^{n}}}$ is independent on the positive integer n.

5: Prove that for any integer $n \geq 10$, there is a perfect cube strictly between n and $3 n$.

6: Let x, y be positive integers such that $2 x^{2}+x=3 y^{2}+y$. Prove that $x-y, 2 x+2 y+1$ and $3 x+3 y+1$ are all perfect squares.

7: Prove that $\int_{0}^{1} \frac{1}{\ln x}+\frac{1}{1-x} d x=\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} \frac{1}{n}-\ln N\right)$.
8: For any positive integer k, let p_{k} denote the k-th prime. Prove that for any positive integer m, $p_{1}^{m}+\cdots+p_{n}^{m}>n^{m+1}$.

9: Prove that there is a constant $C>0$ such that for $\lambda>1, \int_{0}^{\infty} e^{-\lambda\left(x^{3}+x^{5}\right)} d x=C \lambda^{-1 / 3}+O\left(\lambda^{-1}\right)$.

10: Let n and k be positive integers with $n \geq 3$. Let $p(x)=x^{n}+x^{n-1}+\cdots+x-k$.
(a) Prove that $p(x)$ has no repeated (complex) roots.
(b) Prove that if $k>n$, then $p(x)$ has at least one root with negative real part and nonzero imaginary part.

11: Prove that there exist coprime integers L_{0}, L_{1} such that the sequence defined by $L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$ contains no prime numbers. (You may use the fact that the set of integers can be covered by finitely congruence classes with distinct moduli.)

12: Let $f(x)$ be a real-valued function with continuous third derivatives such that $f(x), f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x)$ are all positive for all x. Suppose $f^{\prime \prime \prime}(x) \leq f(x)$ for all x. Prove that $f^{\prime}(x)<2 f(x)$ for all x.

Week 4: Hints

$1: w=2 t$.

2: Find $\operatorname{Pr}(\min \leq a, \max \leq b)$ and take $\partial a \partial b$ for the joint probability density function.
3: $a_{1}+a_{2} \zeta_{p}+\cdots+a_{p} \zeta_{p}^{p-1}=0$.
4: $\phi(10)=4$.
5: Show that if $\sqrt[3]{b}-\sqrt[3]{a}>1$, then there is a perfect cube strictly between a and b.
6: Consider $(x-y)(2 x+2 y+1)$.
7: Set $x=e^{-t}$ and then expand. Handle $\frac{e^{-t}}{t}$ via $\sum_{n=1}^{\infty} \frac{e^{-n t}-e^{-(n+1) t}}{t}$.
8: $\left(\frac{a_{1}^{m}+\cdots+a_{n}^{m}}{n}\right) \geq\left(\frac{a_{1}+\cdots+a_{n}}{n}\right)^{m}$.
9: Consider $\int_{0}^{\infty} e^{-\lambda x^{3}}-e^{-\lambda\left(x^{3}+x^{5}\right)} d x$.
10: Consider $p(x)(x-1)$.
11: $L_{n} F_{c-1}+L_{n+1} F_{c}=L_{n+c}$. So if $p \mid F_{c}$ and $p \mid L_{n}$, then $p \mid L_{n+k c}$ for all $k \in \mathbb{Z}$.
12: Prove that $f^{\prime}(0)+f^{\prime \prime}(0) x+f(0) x^{2} / 2$ and $f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) x^{2} / 2$ are always positive.

