Week 3: Assorted Problems

1: Let $n \geq 2$ be an integer. Prove that $\prod_{k=0}^{n}\binom{n}{k} \leq\left(\frac{2^{n}-2}{n-1}\right)^{n-1}$.
2: Let $P(x)$ be a polynomial with real coefficients such that $P(x) \geq 0$ for all $x \in \mathbb{R}$. Prove that there exist polynomials $Q(x)$ and $R(x)$ such that $P(x)=Q(x)^{2}+R(x)^{2}$.

3: Let p be a prime. Let $f(x)=x^{p-1}+\cdots+1$ Prove that $f(a) \equiv p\left(\bmod p^{2}\right)$ for any $a \equiv 1(\bmod p)$.

4: An infinite checkerboard is colored black and white so that every 2×3 block contains exactly two white squares. How many white squares does a 2022×2021 block contain?

5: Prove that any collection of pairwise non-disjoint subsets of $\{1, \ldots, n\}$ has size at most 2^{n-1}.
6: Cagnus Marlsen trains by playing at least one game per day, but, to avoid exhaustion, no more than 13 games in any 7 consecutive days. Prove that there is a group of consecutive days in which Cagnus plays exactly 20 games.

7: Prove that for any positive integer m, there exists a positive integer N such that for all integer $r>N$, there exists positive integers x_{1}, \ldots, x_{r} such that $\frac{1}{x_{1}^{m}}+\cdots+\frac{1}{x_{r}^{m}}=1$.

8: Let A, B, C be three non-colinear points on \mathbb{R}^{2} of distance at most d from each other. Prove that there are at most $O\left(d^{2}\right)$ points whose distances to A, B and C are all integers.

9: Find all differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{\prime}(x)=\frac{f(x+n)-f(x)}{n}$ for all $x \in \mathbb{R}$ and all positive integers n.

10: Determine the number of permutations $a_{1}, a_{2}, \ldots, a_{2022}$ of $1,2, \ldots, 2022$ such that $\left|a_{i}-i\right|$ is constant for $i=1, \ldots, 2022$.

11: Prove that for any $x>0, \int_{0}^{\infty} \frac{e^{-t x}}{1+t^{2}} d t=\int_{0}^{\infty} \frac{\sin t}{t+x} d t$.
12: For any positive integer k, find the smallest integer n such that there exist $n \times n$ matrices A, B such that $(A B)^{k}=0$ and $(B A)^{k} \neq 0$.

Week 3: Hints

1: AMGM

2: The roots of $P(x)$ come in complex conjugate pairs.
3: $f(a+b p) \equiv f(a)+b p f^{\prime}(a)\left(\bmod p^{2}\right)$.

4: Consider the distribution of white and black squares in a 3×3 block.
5: The collections $\left\{A_{1}, \ldots, A_{m}\right\}$ and $\left\{\bar{A}_{1}, \ldots, \overline{A_{m}}\right\}$ are disjoint.
6: There is a group of at most 20 days where Cagnus plays a multiple of 20 games.
7: Prove that if a solution exists for r, then it exists for $r+\left(a^{m}-1\right) k$ for any positive integers m and k.

8: If $|d(P, A)-d(P, B)|$ is an integer less than d, then P lies on a union of $O(d)$ hyperbolae.
9: Prove $f^{\prime \prime}(x)=0$.
10: Prove that $f(i)=a_{i}$ is an order 2 involution if it is not the identity.
11: Both sides satisfy $y^{\prime \prime}+y=1 / x$.

12: Try some small values of k.

