Week 2: Assorted Problems

1: Suppose $\alpha \in \mathbb{R}$ with $\cos \alpha \neq 1$. Evaluate $\frac{\sin (2022)+\sin (2022+\alpha)}{\cos (2022)-\cos (2022+\alpha)}$.
2: Let a_{1}, \ldots, a_{2022} be real numbers in (0,1). Define for $n \geq 2023, a_{n}=\left(a_{n-1}+a_{n-2}+\cdots+a_{n-2022}\right)^{1 / 2023}$. Prove that $\lim _{n \rightarrow \infty} a_{n}$ exists.

3: Let $a, b, c, d>0$. Find all possible values for

$$
S=\frac{a}{a+b+d}+\frac{b}{a+b+c}+\frac{c}{b+c+d}+\frac{d}{a+c+d} .
$$

4: Given any increasing sequence $1<a_{1}<a_{2}<\cdots<a_{n}$ of integers, prove that there exists $a_{n+1}>a_{n}$ such that $a_{1}+\cdots+a_{n+1}$ divides $a_{1}^{2}+\cdots+a_{n+1}^{2}$.
5: Prove that for any real numbers a_{1}, \ldots, a_{n}, we have $\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{a_{i} a_{j}}{i+j-1} \geq 0$.
6: Consider the Fibonacci sequence defined by $f_{1}=f_{2}=1$ and $f_{n}=f_{n-2}+f_{n-1}$ for $n \geq 3$. Find all integers a, b such that $a f_{n}+b f_{n+1}$ is another element of the Fibonacci sequence for all $n \geq 1$.

7: Let p be an odd prime. Compute $\sum_{k=0}^{\frac{p-1}{2}} \frac{(p-1)!}{(k!)^{2}(p-1-2 k)!}$ modulo p.
8: Determine $\left\lfloor\prod_{n=2}^{2022} \frac{2 n+2}{2 n+1}\right\rfloor$ given that it is coprime to 2022.
9: Let $f(x):[0, \infty) \rightarrow \mathbb{R}$ be a strictly decreasing function such that $\lim _{x \rightarrow \infty} f(x)=0$. Prove that $\int_{0}^{\infty} \frac{f(x)-f(x+1)}{f(x)} d x$ diverges.

10: Let M_{1}, \ldots, M_{n} be $m \times m$ real matrices such that $\left\{M_{1}, \ldots, M_{n}\right\}$ forms a group under matrix multiplication. Suppose $M_{1}+\cdots+M_{n}$ has trace 0 . Prove that $M_{1}+\cdots+M_{n}=0$.

11: For $x, y>0$, define two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ by $x_{1}=x, y_{1}=y$ and $x_{n+1}=\frac{x_{n}+y_{n}}{2}$ and $y_{n+1}=\sqrt{x_{n} y_{n}}$. Prove that

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=\frac{\pi}{\int_{0}^{\pi} \frac{d \theta}{\sqrt{x^{2} \cos ^{2} \theta+y^{2} \sin ^{2} \theta}}}
$$

12: Find the smallest integer k such that for all quadratic polynomials $P(x)$ with integer coefficients, at least one of the integers $P(1), \ldots, P(k)$ has a 0 digit in base 2 .

Week 2: Hints

1: What is the derivative of $\frac{\sin (x)+\sin (x+\alpha)}{\cos (x)-\cos (x+\alpha)}$?
2: Just do it.
3: Bound S between 1 and 2 .
4: Given $1<u<v$, set $x=v+u^{2}-u$. Then $u+x$ divides $v+x^{2}$.
5: Integrate $\left(\sum_{i=1}^{n} a_{i} x^{i-1}\right)^{2}$.
6: $f_{m} f_{n}+f_{m+1} f_{n+1}=f_{m+n+1}$.
7: This is the constant term in $\left(x+\frac{1}{x}+1\right)^{p-1}$.
8: Bound $\left(\frac{2 n+2}{2 n+1}\right)^{2}$ by something that telescopes.
9: Consider $\int_{n}^{n+m} \frac{f(x)-f(x+1)}{f(x)} d x$ for any $n, m \in \mathbb{N}$.
10: If T denotes $M_{1}+M_{2}+\ldots+M_{n}$, then $T^{2}=n T$.
11: Let $f(x, y)=\int_{0}^{\pi} \frac{d \theta}{\sqrt{x^{2} \cos ^{2} \theta+y^{2} \sin ^{2} \theta}}$. Prove that $f(x, y)=f\left(\frac{x+y}{2}, \sqrt{x y}\right)$. This is known as the Arithmetic-Geometric-Mean of x and y.

12: There aren't many ways $\pm\left(2^{m}-1\right)$ could fit in an arithmetic sequence.

