Week 1: Assorted Problems

1: Find the minimum of $\frac{\sin ^{3} x}{\cos x}+\frac{\cos ^{3} x}{\sin x}$ for $0<x<\pi / 2$.
2: Prove that for any positive integer n, the fraction

$$
\frac{1 \times 3 \times 5 \times \cdots \times(2 n-1)}{2 \times 4 \times 6 \times \cdots \times(2 n)}
$$

is of the form $a / 2^{b}$ where a is an odd integer and $b<2 n$.

3: Let S be the set of 3×3 matrices with entries $0,1,-1$. Prove that

$$
\{\operatorname{det}(A): A \in S\}=\{-4,-3,-2,-1,0,1,2,3,4\}
$$

4: Define a sequence a_{n} by $\sum_{d \mid n} a_{d}=2^{n}$. Prove that $n \mid a_{n}$ for all $n \geq 1$.

5: Let p be a prime and k be an integer. Find $\sum_{x \in \mathbb{F}_{p} \backslash\{0\}} x^{k}$, where \mathbb{F}_{p} is the finite field of p elements.
6: Let S be a finite set of points on the plane. Suppose S has at least 2 points. Prove that there exists a point p on the plane whose maximum distance to the points of S is achieved by 2 different points in S. That is, there exists $u, v \in S$ and $p \in \mathbb{R}^{2}$ with $u \neq v$ and $d(p, u)=d(p, v)=\max _{x \in S} d(p, x)$.

7: Consider a sequence x_{n} with the property $x_{n+1}=2 x_{n}-n^{2}$ for $n \geq 0$. For which values of x_{0} are all the terms of the sequence positive?

8: Find two primes less than 500 that divide $20^{22}+1$.
9: Evaluate $\int_{0}^{\infty} \frac{t^{2}-\sin ^{2} t}{t^{4}} d t$.
10: Let $f(x):[0, \infty) \rightarrow \mathbb{R}$ be a continuous function such that

$$
f(x)\left(f(x)-\frac{1}{x} \int_{0}^{x} f(t) d t\right) \geq(f(x)-1)^{2}
$$

Prove that $f(x)$ is the constant function 1 .
11: Prove that $\sum_{n=1}^{\infty} \frac{\sin n}{n}=\frac{\pi-1}{2}$.

12: Find the number of functions $f(x)$ from non-negative integers to non-negative integers such that $f(f(n))=n+2022$ for every non-negative integer n.

1: $\left\{\sin ^{3} x, \cos ^{3} x\right\}$ and $\{1 / \cos x, 1 / \sin x\}$ are oppositely sorted.
2: The given fraction equals $\frac{1}{2^{2 n}}\binom{2 n}{n}$.
3: How can 2×2 matrices have determinant 2 .

4: a_{d} is the number of non-repeated binary words of length $d . a_{n} / n$ is also the number of irreducible polynomials of degree n over \mathbb{F}_{2}.

5: Change the sum into a geometric sum involving a primitive root in \mathbb{F}_{p}^{\times}. Also, the sum is invariant under multiplying by a^{k} for any $a \in \mathbb{F}_{p}^{\times}$.

6: Take a circle enclosing S and start shrinking it.

7: If u_{n} and v_{n} are two sequences with the given property, what does $v_{n}-x_{n}$ look like?

8: Consider the order of 20 in $(\mathbb{Z} / p \mathbb{Z})^{\times}$.
9: $\int_{0}^{\infty} s^{3} e^{-s t} d s=\frac{3!}{t^{4}}$.
10: Consider $F(x)=\frac{1}{x} \int_{0}^{x} f(t) d t-1$.
11: $\operatorname{Im}\left(-\log \left(1-e^{i}\right)\right)$.
12: f gives an order 2 involution on $\mathbb{Z} / 2022 \mathbb{Z}$.

