Week 9: Assorted Problems

1: For any positive integer X, let $N(X)$ denote the number of integer solutions to $u^{2}+u v+v^{2}=X$. Prove that $6 \mid N(X)$ for all positive integers X.

2: Let $f: \mathbb{Q} \rightarrow \mathbb{R}$ be a function with $|f(x)-f(y)| \leq(x-y)^{2}$ for all $x, y \in \mathbb{Q}$. Prove that f is constant.

3: Let u, v, w be three vectors in \mathbb{R}^{2} of length 1 . Prove that there is choice of \pm 's such that the length of $\pm u \pm v \pm w$ is at most 1 .

4: Let $f(x, y)$ and $g(x, y)$ be continuous functions on the unit disk $D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. Suppose $f>g$ on the boundary of D. Suppose f and g have continuous second partial derivatives on the interior of D with

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}} \leq e^{f}, \quad \frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial^{2} g}{\partial y^{2}} \geq e^{g}
$$

Prove that $f \geq g$ everywhere on D.
5: Prove that the positive integers that cannot be expressed as $\operatorname{lcm}(a, b)+\operatorname{lcm}(b, c)+\operatorname{lcm}(a, c)$ for some positive integers a, b, c are exactly the powers of 2 .

6: (Pfaffian) Let $A=\left(a_{i j}\right)$ be an $2 n \times 2 n$ skew symmetric matrix, that is $a_{i j}=-a_{j i}$ for all i, j. Prove that $\operatorname{det}(A)$, as a polynomial in $a_{i j}$'s is the square of a polynomial in the $a_{i j}$'s.

7: Let $g(x) \in \mathbb{C}[x]$ be a quadratic polynomial with complex coefficients such that $g(x)-x$ has two distinct roots. Prove that there does not exist a function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that $g(x)=f(f(x))$ for all $x \in \mathbb{C}$.

8: Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable with $|f(x)| \leq 1$ and $f^{\prime}(x)>0$ for all x. Suppose $0<\alpha<\beta$. Prove that

$$
\lim _{n \rightarrow \infty} \int_{\alpha}^{\beta} f^{\prime}\left(n x-\frac{1}{x}\right) d x=0
$$

9: For any $v=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, define for any positive integer p,

$$
\|v\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p} \quad \text { and } \quad\|v\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|
$$

Prove that the series $\sum_{p=1}^{\infty}\left(\|v\|_{p}-\|v\|_{\infty}\right)$ converges if and only if there is exactly one of the x_{i} 's with the maximal absolute value.

10: Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function with $\int_{0}^{1} f(x) d x=1$. Prove that

$$
\lim _{n \rightarrow \infty} \frac{n}{\ln n} \int_{0}^{1} x^{n} f\left(x^{n}\right) \ln (1-x) d x=-1
$$

11: Find all integers r such that there are at least two pairs of positive integers (m, n) such that $2^{m}=n!+r$.

12: For any positive integer n, let

$$
a_{n}=\sum_{k=1}^{n} \frac{k}{\operatorname{gcd}(n, k)}, \quad b_{n}=\sum_{k=1}^{n} \frac{n}{\operatorname{gcd}(n, k)} .
$$

(a) Prove that $2 a_{n}=1+b_{n}$ for all $n \geq 1$.
(b) Prove that for any $s>3, \sum_{n=1}^{\infty} \frac{b_{n}}{n^{s}}=\frac{\zeta(s) \zeta(s-2)}{\zeta(s-1)}$.

