Week 8: Assorted Problems

1: Let \mathbb{N} denote the set of positive integers. Prove that $f(x)=x$ is the only function from \mathbb{N} to \mathbb{N} for which $x^{2}+f(y)$ divides $f(x)^{2}+y$ for all $x, y \in \mathbb{N}$.

2: Let $a_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}}$ and $b_{n}=\sum_{k=1}^{n} \frac{1}{(2 k-1)^{2}}$. Prove that $\lim _{n \rightarrow \infty} n\left(\frac{b_{n}}{a_{n}}-\frac{3}{4}\right)=\frac{3}{\pi^{2}}$.
3: Let $p \equiv 3(\bmod 4)$ be a prime. Let S be a set of $p-1$ consecutive positive integers. Prove that S cannot be partitioned into two subsets, each having the same products of the elements.

4: Prove Catalan's identity: Let $F_{1}=1, F_{2}=1, F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3$ be the usual Fibonacci sequence. Then for any positive integers r, n with $r<n$,

$$
F_{n}^{2}-F_{n-r} F_{n+r}=(-1)^{n-r} F_{r}^{2}
$$

5: Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous with $x f(x)=2 \int_{x / 2}^{x} f(t) d t+\frac{x^{2}}{4}$. Prove that $f(x)=x+C$ for some constant C.

6: Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ be real numbers with $0<\alpha_{1} \leq \alpha_{2} \leq \alpha_{3} \leq \alpha_{4}<\pi$ and $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=2 \pi$. Prove that $\cos \alpha_{1}+\cos \alpha_{2}+\cos \alpha_{3}+\cos \alpha_{4}<\frac{1}{2}$. Note also that $\frac{1}{2}$ is the best possible upper bound.

7: Let A be an $n \times n$ matrix all of whose entries are ± 1. Prove that $|\operatorname{det}(A)| \leq \frac{2}{3} n!$.
8: Let $\left(a_{n}\right)$ be a sequence of positive real numbers such that $\lim _{n \rightarrow \infty} a_{n}=1, \lim _{n \rightarrow \infty} \sqrt[n]{a_{1} a_{2} \cdots a_{n}}=1$. Prove that

$$
\lim _{n \rightarrow \infty} \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}=1
$$

9: Suppose $f(x, y)$ has continuous partial derivatives on the unit disk $D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. Suppose $f(x, y)=1$ on the boundary of D and that $\max _{(x, y) \in D}\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial x}\right)^{2}=1$. Prove that

$$
\left|\iint_{D} f(x, y) d x d x\right| \leq \frac{4}{3} \pi
$$

10: Let $A B C D$ be a convex quadrilateral with $A D=B C$. Let P be the intersection of the diagonals $A C$ and $B D$. Let K and L be the circumcenters of the triangles $P A D$ and $P B C$ respectively (the
circumcenter of a triangle is the center of the circle passing through the vertices of the triangle). Prove that the midpoints of $A B, C D$, and $K L$ are colinear.

11: Prove that $\int_{0}^{\infty} \frac{\sin ^{2} x-x \sin x}{x^{3}}=\frac{1}{2}-\ln 2$.
12: Let $k>1$ be any integer. Prove that the function $f(n)=n^{k}-n$! is injective on \mathbb{N}.

