Week 7: Assorted Problems

- 1: Prove the exponent of the prime number p in the prime factorization of n! equals $\frac{n s_p(n)}{p 1}$ where $s_p(n)$ is the sum of the digits of n when written in base p.
- 2: Suppose the series $\sum_{n=1}^{\infty} a_n x_n$ converges for all sequences (x_n) such that $\lim_{n \to \infty} x_n = 0$. Prove that the series $\sum_{n=1}^{\infty} |a_n|$ converges.
- **3:** Consider two bags where the first bag has m 1 white balls and 1 black ball and the second bag has m white balls. Randomly pick one ball from each bag and place it into the other bag. Repeat this process n times. Compute the probability that the black ball is in the first bag.
- 4: Suppose $f(x, y); [0, 1] \times [0, 1] \to \mathbb{R}$ have continuous second partial derivatives with f(x, 0) = f(0, y) = 0 for all x, y. Prove that

$$\left| \int_0^1 \int_0^1 f(x,y) \, dx \, dy \right| \le \frac{1}{4} \max_{0 \le x, y \le 1} \left| \frac{\partial^2 f}{\partial x \partial y} \right|.$$

5: Prove that the equation $x^4 = y^2 + z^2 + 4$ has no integer solutions.

6: Let A be an $m \times n$ matrix, B be an $n \times p$ matrix and let C be a $p \times q$ matrix. Prove that

$$\operatorname{rank}(AB) + \operatorname{rank}(BC) - \operatorname{rank}(B) \le \operatorname{rank}(ABC).$$

- 7: Let G be a group such that $(xy)^2 = (yx)^2$ for every $x, y \in G$. Prove that $(xyx^{-1}y^{-1})^2 = e$, where e is the identity of G.
- 8: Let n > 1 be an integer and let $f(x) = \int_0^x e^{-t} \left(1 + \frac{t}{1!} + \frac{t^2}{2!} + \dots + \frac{t^n}{n!}\right) dt$. Prove that $f(x) = \frac{n}{2}$ has a solution in (n/2, n).
- **9:** Prove the Combinatorial Nullstellensatz: Let F be a field and let $f \in F[x_1, \ldots, x_n]$ be a polynomial. Let S_1, \ldots, S_n be nonempty subsets of F such that $f(s_1, \ldots, s_n) = 0$ for all $(s_1, \ldots, s_n) \in S_1 \times \cdots \times S_n$. Let $g_i(x_i) = \prod_{s_i \in S} (x_i - s_i)$. Prove that there exist polynomials $h_1, \ldots, h_n \in F[x_1, \ldots, x_n]$ such that $f = g_1 h_1 + \cdots + g_n h_n$ and $\deg(h_i) \leq \deg(f) - \deg(g_i)$ for all i.

As a consequence, prove that if $\deg(f) = t_1 + \cdots + t_n$ and $t_i < |S_i|$ for all i and the $x_1^{t_1} \cdots x_n^{t_n}$ coefficient of f is nonzero, then $f(s_1, \ldots, s_n) \neq 0$ for some $(s_1, \ldots, s_n) \in S_1 \times \cdots \times S_n$.

- **10:** Find a nonzero polynomial F(x, y, z) of the smallest degree such that F(a, b, c) = 0 for all integers $a, b, c \in [1, n]$.
- 11: Prove that the number of squarefree positive integers less than or equal to N is at least $\frac{6N}{\pi^2} 2\sqrt{N} 1$.
- 12: For any positive integer n, let a_n denote the product of the first n primes. Prove that every integer less than a_n can be written as a sum of at most 2n distinct divisors of a_n .