Week 7: Assorted Problems

1: Prove the exponent of the prime number p in the prime factorization of n ! equals $\frac{n-s_{p}(n)}{p-1}$ where $s_{p}(n)$ is the sum of the digits of n when written in base p.

2: Suppose the series $\sum_{n=1}^{\infty} a_{n} x_{n}$ converges for all sequences $\left(x_{n}\right)$ such that $\lim _{n \rightarrow \infty} x_{n}=0$. Prove that the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges.

3: Consider two bags where the first bag has $m-1$ white balls and 1 black ball and the second bag has m white balls. Randomly pick one ball from each bag and place it into the other bag. Repeat this process n times. Compute the probability thst the black ball is in the first bag.

4: Suppose $f(x, y) ;[0,1] \times[0,1] \rightarrow \mathbb{R}$ have continuous second partial derivatives with $f(x, 0)=f(0, y)=$ 0 for all x, y. Prove that

$$
\left|\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y\right| \leq \frac{1}{4} \max _{0 \leq x, y \leq 1}\left|\frac{\partial^{2} f}{\partial x \partial y}\right|
$$

5: Prove that the equation $x^{4}=y^{2}+z^{2}+4$ has no integer solutions.

6: Let A be an $m \times n$ matrix, B be an $n \times p$ matrix and let C be a $p \times q$ matrix. Prove that

$$
\operatorname{rank}(A B)+\operatorname{rank}(B C)-\operatorname{rank}(B) \leq \operatorname{rank}(A B C)
$$

7: Let G be a group such that $(x y)^{2}=(y x)^{2}$ for every $x, y \in G$. Prove that $\left(x y x^{-1} y^{-1}\right)^{2}=e$, where e is the identity of G.

8: Let $n>1$ be an integer and let $f(x)=\int_{0}^{x} e^{-t}\left(1+\frac{t}{1!}+\frac{t^{2}}{2!}+\cdots+\frac{t^{n}}{n!}\right) d t$. Prove that $f(x)=\frac{n}{2}$ has a solution in $(n / 2, n)$.

9: Prove the Combinatorial Nullstellensatz: Let F be a field and let $f \in F\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial. Let S_{1}, \ldots, S_{n} be nonempty subsets of F such that $f\left(s_{1}, \ldots, s_{n}\right)=0$ for all $\left(s_{1}, \ldots, s_{n}\right) \in S_{1} \times \cdots \times$ S_{n}. Let $g_{i}\left(x_{i}\right)=\prod_{s_{i} \in S}\left(x_{i}-s_{i}\right)$. Prove that there exist polynomials $h_{1}, \ldots, h_{n} \in F\left[x_{1}, \ldots, x_{n}\right]$ such that $f=g_{1} h_{1}+\cdots+g_{n} h_{n}$ and $\operatorname{deg}\left(h_{i}\right) \leq \operatorname{deg}(f)-\operatorname{deg}\left(g_{i}\right)$ for all i.
As a consequence, prove that if $\operatorname{deg}(f)=t_{1}+\cdots+t_{n}$ and $t_{i}<\left|S_{i}\right|$ for all i and the $x_{1}^{t_{1}} \cdots x_{n}^{t_{n}}$ coefficient of f is nonzero, then $f\left(s_{1}, \ldots, s_{n}\right) \neq 0$ for some $\left(s_{1}, \ldots, s_{n}\right) \in S_{1} \times \cdots \times S_{n}$.

10: Find a nonzero polynomial $F(x, y, z)$ of the smallest degree such that $F(a, b, c)=0$ for all integers $a, b, c \in[1, n]$.

11: Prove that the number of squarefree positive integers less than or equal to N is at least $\frac{6 N}{\pi^{2}}-2 \sqrt{N}-1$.
12: For any positive integer n, let a_{n} denote the product of the first n primes. Prove that every integer less than a_{n} can be written as a sum of at most $2 n$ distinct divisors of a_{n}.

