Week 6: Assorted Problems

1: Prove that the equation $x^{2}+y^{2}=z^{n}$ has positive integer solutions for all positive integers n.
2: Let $f(x):[a . b] \rightarrow \mathbb{R}$ be a positive increasing function. Let $x_{n} \in[a, b]$ be such that $f\left(x_{n}\right)^{n}=$ $\frac{1}{b-a} \int_{a}^{b} f(x)^{n} d x$ for $n \geq 1$. Prove that $\lim _{n \rightarrow \infty} x_{n}=1$.

3: Compute the integral $\int_{0}^{\infty} \frac{u}{1+e^{u}} d u$.
4: Consider two $n \times n$ matrices A, B with real coefficients and $A B=A+B$. Suppose some positive power of A is 0 . Prove that $\operatorname{det}(B+2021 A)=\operatorname{det}(B)$.

5: Let a be an irrational number and let b be any real number. Prove that if $c, d \in \mathbb{R}$ such that $\lfloor a n+b\rfloor=\lfloor c n+d\rfloor$ for any positive integer n, then $a=c$ and $b=d$.

6: Let G be a group with elements a, b, c, d such that $a b=b a=c d=d c$. Suppose the orders of a, b, c, d satisfy $o(a)=o(c)=n$ and $o(b)=o(d)=m$ with $\operatorname{gcd}(n, m)=1$. Prove that $a=c$ and $b=d$.

7: Find the real cubic polynomial $p(x)$ such that $p(x) \leq x^{4}$ on $[0,1]$ and such that $\int_{0}^{1}\left|x^{4}-p(x)\right| d x$ is minimal among all such cubic polynomials.

8: Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f\left(x^{2}-y^{2}\right)=x f(x)-y f(y)$ for all $x, y \in \mathbb{R}$.
9: Let $A=\left(a_{i j}\right)$ be an $n \times n$ invertible matrix with real entries and $n \geq 2$. Prove that there exist integers x_{1}, \ldots, x_{n} not all 0 such that

$$
\sum_{i=1}^{n}\left|a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}\right| \leq \sqrt[n]{n!\cdot \operatorname{det} A}
$$

10: Prove Hilbert's inequality: For any real numbers a_{1}, \ldots, a_{n},

$$
\sum_{1 \leq i, j \leq n} \frac{a_{i} a_{j}}{i+j} \leq \pi \sum_{i=1}^{n} a_{i}^{2}
$$

11: Prove that if n is an integer at least 2 , then $2^{n}-1 \nmid 3^{n}-1$.

12: For any positive integer n, let $f(n)$ denote the largest prime divisor of n. Let $\left(a_{n}\right)$ be an increasing of positive integers. Prove that the set $\left\{f\left(a_{i}+a_{j}\right): i \neq j\right\}$ is infinite.

