## Week 5: Assorted Problems

1: Let $m, n$ be positive integers. Let $p$ be the product of all the prime divisors of $\operatorname{gcd}(m, n)$. Prove that $\frac{\phi(m n)}{\phi(m) \phi(n)}=\frac{p}{\phi(p)}$ where $\phi(m)$ is the Euler-totient function.

2: Compute $\sum_{k=1}^{\infty} \frac{1}{\operatorname{lcm}(k, 10)^{2}}$.
3: Suppose $f(x):[0,1] \rightarrow \mathbb{R}$ is continuous. Prove that $\int_{0}^{1} e^{f(x)} d x \int_{0}^{1} e^{-f(y)} d y \geq 1$.
4: Find monic quadratic polynomials $P(x), Q(x), R(x)$ such that $P(Q(x))=(x-1)(x-3)(x-5)(x-7)$ and $Q(R(x))=(x-2)(x-4)(x-6)(x-8)$.

5: Prove Flett's Theorem: Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable function. Show that if $f^{\prime}(a)=f^{\prime}(b)$, then there exists $c \in(a, b)$ such that $f(c)-f(a)=(c-a) f^{\prime}(c)$.

6: Let $p$ be an odd prime. Suppose $a_{0}, a_{1}, \ldots, a_{p+1}$ are integers such that $\left(x^{2}-x+1\right)^{(p+1) / 2}=\sum_{n=0}^{p+1} a_{n} x^{n}$. Compute the remainder when $a_{0}^{2}+a_{1}^{2}+\cdots+a_{p+1}^{2}$ is divided by $p$.

7: Let $f(x):[0,1] \rightarrow \mathbb{R}$ be differentiable with $f(0)=f(1)=0$. Prove that

$$
\left(\int_{0}^{1} x f(x) d x\right)^{2} \leq \frac{1}{45} \int_{0}^{1}\left(f^{\prime}(x)\right)^{2} d x
$$

8: Let $A \in M_{n}(\mathbb{R})$ be an $n \times n$ matrix over $\mathbb{R}$.
(a) If $\operatorname{Tr}(A)=0$, then there exists an invertible matrix $P$ such that the diagonal entries of $P^{-1} A P$ are all 0 .
(b) For any matrix $A \in M_{n}(\mathbb{R})$, prove that there exist a real number $\lambda$ and two nilpotent matrices $A_{1}$ and $A_{2}$ such that $A=\lambda I_{n}+A_{1}+A_{2}$. Here $I_{n}$ denotes the $n \times n$ identity matrix and a matrix is nilpotent if some positive power of it is 0 .

9: Let $c \in(0,1)$ and $x_{1} \in(0,1)$ with $x_{1} \neq c\left(1-x_{1}^{2}\right)$. Define $x_{n}=c\left(1-x_{n-1}^{2}\right)$ for $n \geq 2$. Prove that the sequence $\left(x_{n}\right)$ converges if and only if $c \in(0, \sqrt{3} / 2)$.

10: Let $f(x)=a_{n} x^{n}+\cdots+a_{0}$ be a degree $n$ polynomial with coefficients in $\mathbb{R}$ with $n \geq 2$. Suppose
$a_{k}=0$ for some $k=1, \ldots, n-1$ and $a_{i} \neq 0$ for all $i \neq k$. Suppose $f(x)$ has $n$ distinct real roots. Prove that $a_{k-1} a_{k+1}<0$.

11: Find the smallest prime number $p$ such that there exist positive integers $a, b$ such that $a^{2}+p^{3}=b^{4}$.
12: Let $p \geq 5$ be a prime. Prove that $p^{2}$ divides $\sum_{k=1}^{p^{2}-1}\binom{2 k}{k}$.

