Week 4: Assorted Problems

1: Find the smallest prime p such that $p+p^{-1} \equiv 25(\bmod 143)$.
2: Compute $\sum_{n=2}^{\infty} \sum_{k=1}^{\infty} \frac{1}{k n^{2 k}}$.
3: Let $p(x)$ be a polynomial with positive real coefficients. Prove that the function $\ln \left(p\left(e^{x}\right)\right)$ is concave up on $(0, \infty)$.

4: Let $f_{1}, f_{2}: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be two nonzero linear maps such that $f_{1} \neq \lambda f_{2}$ for any $\lambda \in \mathbb{C}$. Prove that for any $v \in \mathbb{C}^{n}$, there exists $v_{1}, v_{2} \in \mathbb{C}^{n}$ such that $v=v_{1}+v_{2}$ and $f_{1}(v)=f_{1}\left(v_{1}\right)$ and $f_{2}(v)=f_{2}\left(v_{2}\right)$.

5: Suppose an $a \times b$ rectangle can be tiled by $1 \times m$ and $n \times 1$ rectangles. Prove that $n \mid a$ or $m \mid b$.

6: Let m be a positive integer. Prove that for any positive integers n, ℓ, there exists an $m \times m$ matrix A such that

$$
A^{n}+A^{\ell}=I_{m}+\left(\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
2 & 1 & 0 & \cdots & 0 & 0 \\
3 & 2 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
m-1 & m-2 & m-3 & \cdots & 1 & 0 \\
m & m-1 & m-2 & \cdots & 2 & 1
\end{array}\right)
$$

7: Does $\sin \left(n^{2}\right)+\sin \left(n^{3}\right)$ converge as $n \rightarrow \infty$?
8: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $\sup |f(x+y)-f(x)-f(y)|<\infty$. Prove that there exists a real number α such that $\sup _{x}|f(x)-\alpha x|<\infty$.

9: Prove that the equation $x^{8}=n!+1$ has finitely many solutions in positive integers.

10: Find all polynomials $f(x)$ with integer coefficients such that $f(p) \mid 2^{p}-2$ for any prime p.
11: Prove that any integer which can be written as the sum of squares of three rational numbers can also be written as a sum of squares of three integers.

12: Prove Cohn's irreducibility criterion: Let $b \geq 2$ and let p be a prime. Suppose $p=\left(a_{n} a_{n-1} \cdots a_{0}\right)_{b}$ in base- b. That is, $p=a_{n} b^{n}+\cdots+a_{0}$ with $0 \leq a_{i} \leq b-1$. Then the polynomial $f(x)=$ $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ is irreducible over \mathbb{Q}.

