Week 3: Assorted Problems

- 1: Let k be a positive integer. Prove that there exist integers m, n such that k < m < n and $gcd(m(2^m 1), n(2^n 1)) = 1$.
- **2:** Suppose $A \subset \mathbb{N}$ with $\limsup_{N \to \infty} \frac{\#(A \cap [1, N])}{N} > 0$. Prove that $\sum_{n \in A} \frac{1}{n}$ is divergent.
- **3:** Prove that every sequence in \mathbb{R} has non-increasing or a non-decreasing subsequence.
- 4: Prove Beaty's Theorem: Let α, β be two positive irrational numbers such that $\frac{1}{\alpha} + \frac{1}{\beta} = 1$. Prove that the sets $\{|n\alpha|: n \ge 1\}$ and $\{|n\beta|: n \ge 1\}$ form a partition of the set of positive integers.
- 5: Let $\phi(n)$ denote the Euler-totient function of n. Prove that $\sum_{n=1}^{\infty} \frac{\phi(n)t^n}{1-t^n} = \frac{t}{(1-t)^2}$.
- **6:** Let $f: [0, \infty) \to [0, \infty)$ be a differentiable function. Suppose $f(0) = 0, f'(x) \le \frac{1}{2}$ and $\int_0^\infty f(x) dx$ converges. Prove that for any $\alpha > 0$,

$$\int_0^\infty (f(x))^\alpha \, dx \le \left(\int_0^\infty f(x) \, dx\right)^{\frac{\alpha+1}{2}}.$$

7: Compute the integral $\int_0^1 \int_0^1 \int_0^1 \frac{1}{(1+x^2+y^2+z^2)^2} dx dy dz$.

- 8: Let $F_1 = F_2 = 1$, $F_{n+1} = F_n + F_{n+1}$ be the Fibonacci sequence. Let f be a polynomial of degree 1009 such that $f(k) = F_k$ for $k \in \{1011, \ldots, 2020\}$. Show that $f(2021) = F_{2021} 1$.
- **9:** Let A_1, \ldots, A_{2n} be diagonalizable $n \times n$ matrices over \mathbb{C} . Suppose $A_i A_j = 0$ whenever i < j. Prove that at least n of A_1, \ldots, A_{2n} are 0.
- **10:** Let B_1, \ldots, B_n be *n* boxes such that B_k contains 1 red ball and k-1 white balls for every $k = 1, \ldots, n$. Take one ball from each box at random and let S_n denote the number of red balls. Prove that for any $\epsilon > 0$, $\lim_{n \to \infty} \operatorname{Prob}(|S_n 1| \ge \epsilon) = 0$.
- **11:** Let (b_n) be a decreasing sequence of positive real numbers with $\lim_{n \to \infty} b_n = 0$. Let (a_n) be a sequence of positive real numbers such that $\sum_{n=1}^{\infty} a_n b_n$ converges. Prove that $\lim_{n \to \infty} (a_1 + a_2 + \dots + a_n)b_n = 0$.

12: Prove the following statements:

- (a) For any positive integer n, $(n-1)^2 | n^{n-1} 1$.
- (b) The only polynomial f(n) with integer coefficients such that $f(n) \mid n^{n-1} 1$ for all sufficiently large n is 1, n 1 or $(n 1)^2$.