Week 3: Assorted Problems

1: Let k be a positive integer. Prove that there exist integers m, n such that $k<m<n$ and $\operatorname{gcd}\left(m\left(2^{m}-1\right), n\left(2^{n}-1\right)\right)=1$.

2: Suppose $A \subset \mathbb{N}$ with $\limsup _{N \rightarrow \infty} \frac{\#(A \cap[1, N])}{N}>0$. Prove that $\sum_{n \in A} \frac{1}{n}$ is divergent.
3: Prove that every sequence in \mathbb{R} has non-increasing or a non-decreasing subsequence.
4: Prove Beaty's Theorem: Let α, β be two positive irrational numbers such that $\frac{1}{\alpha}+\frac{1}{\beta}=1$. Prove that the sets $\{\lfloor n \alpha\rfloor: n \geq 1\}$ and $\{\lfloor n \beta\rfloor: n \geq 1\}$ form a partition of the set of positive integers.

5: Let $\phi(n)$ denote the Euler-totient function of n. Prove that $\sum_{n=1}^{\infty} \frac{\phi(n) t^{n}}{1-t^{n}}=\frac{t}{(1-t)^{2}}$.
6: Let $f:[0, \infty) \rightarrow[0, \infty)$ be a differentiable function. Suppose $f(0)=0, f^{\prime}(x) \leq \frac{1}{2}$ and $\int_{0}^{\infty} f(x) d x$ converges. Prove that for any $\alpha>0$,

$$
\int_{0}^{\infty}(f(x))^{\alpha} d x \leq\left(\int_{0}^{\infty} f(x) d x\right)^{\frac{\alpha+1}{2}}
$$

7: Compute the integral $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{\left(1+x^{2}+y^{2}+z^{2}\right)^{2}} d x d y d z$.
8: Let $F_{1}=F_{2}=1, F_{n+1}=F_{n}+F_{n+1}$ be the Fibonacci sequence. Let f be a polynomial of degree 1009 such that $f(k)=F_{k}$ for $k \in\{1011, \ldots, 2020\}$. Show that $f(2021)=F_{2021}-1$.

9: Let $A_{1}, \ldots, A_{2 n}$ be diagonalizable $n \times n$ matrices over \mathbb{C}. Suppose $A_{i} A_{j}=0$ whenever $i<j$. Prove that at least n of $A_{1}, \ldots, A_{2 n}$ are 0 .

10: Let B_{1}, \ldots, B_{n} be n boxes such that B_{k} contains 1 red ball and $k-1$ white balls for every $k=$ $1, \ldots, n$. Take one ball from each box at random and let S_{n} denote the number of red balls. Prove that for any $\epsilon>0, \lim _{n \rightarrow \infty} \operatorname{Prob}\left(\left|S_{n}-1\right| \geq \epsilon\right)=0$.

11: Let $\left(b_{n}\right)$ be a decreasing sequence of positive real numbers with $\lim _{n \rightarrow \infty} b_{n}=0$. Let $\left(a_{n}\right)$ be a sequence of positive real numbers such that $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges. Prove that $\lim _{n \rightarrow \infty}\left(a_{1}+a_{2}+\cdots+a_{n}\right) b_{n}=0$.

12: Prove the following statements:
(a) For any positive integer $n,(n-1)^{2} \mid n^{n-1}-1$.
(b) The only polynomial $f(n)$ with integer coefficients such that $f(n) \mid n^{n-1}-1$ for all sufficiently large n is $1, n-1$ or $(n-1)^{2}$.

