Week 2: Assorted Problems

1: Compute $\lim _{n \rightarrow \infty} \sin ^{2}\left(\pi \sqrt{n^{2022}+n^{1011}+1}\right)$
2: Prove the interpolation formula: Let $f(x)$ be a polynomial of degree n. Then

$$
f(n+1)=\sum_{k=0}^{n} f(k)\binom{n+1}{k}(-1)^{n-k}
$$

3: Prove that among any seven real numbers x_{1}, \ldots, x_{7}, there are two such that $0 \leq \frac{x_{i}-x_{j}}{1+x_{i} x_{j}} \leq \frac{1}{\sqrt{3}}$.
4: Let n be a positive integer. Prove that the number of permutations σ on the set $\{1, \ldots, n\}$ such that $\sigma(i) \neq i$ for all $i=1, \ldots, n$ is $n!\left(1-\frac{1}{1!}+\frac{1}{2!}-\cdots+(-1)^{n} \frac{1}{n!}\right)$.

5: Let α, β, A be real numbers. Prove that $\lim _{n \rightarrow \infty} \sin (n \alpha+\beta)=A$ if and only if $\sin \alpha=0, \sin \beta=A$.
6: Suppose the set of non-negative integers is partitioned into a finite number of arithmetic progressions with starting terms a_{1}, \ldots, a_{n} and common differences r_{1}, \ldots, r_{n}. Prove that
(a) $\frac{1}{r_{1}}+\frac{1}{r_{2}}+\cdots+\frac{1}{r_{n}}=1$.
(b) $\frac{a_{1}}{r_{1}}+\frac{a_{2}}{r_{2}}+\cdots+\frac{a_{n}}{r_{n}}=\frac{n-1}{2}$.

7: For $n \geq 0$, prove that $\prod_{k=0}^{n} \frac{(x+2+4 k)^{4}+4}{(x+4 k)^{4}+4}=\frac{(x+4 n+3)^{2}+1}{(x-1)^{2}+1}$.
8: Let a and b be integers greater than 1. Prove that there is a multiple of a which contains all digits $0,1, \ldots, b-1$ when written in base b.

9: Prove that $\left\lfloor(5 \sqrt{5}+11)^{2 n+1}\right\rfloor$ is even.
10: Let $x_{1}, x_{2}, \ldots, x_{n}$ be arbitrary real numbers. Prove that

$$
\frac{x_{1}}{1+x_{1}^{2}}+\frac{x_{2}}{1+x_{1}^{2}+x_{2}^{2}}+\cdots+\frac{x_{n}}{1+x_{1}^{2}+\cdots+x_{n}^{2}}<\sqrt{n} .
$$

11: Suppose $f:[-2,2] \rightarrow \mathbb{R}$ is an even continuous function. Prove that

$$
\int_{1}^{2} f\left(x^{3}-3 x\right) d x=\int_{0}^{1} f\left(x^{3}-3 x\right) d x
$$

12: Let m, n be positive integers and let k be a nonzero real number. Prove that there does not exist a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{\prime}(x)=k(f(x))^{2 n}+x^{2 m-1}$ for all $x \in \mathbb{R}$.

