Week 1: Assorted Problems

1: Prove that for all $n \geq 3, n^{n+1}>(n+1)^{n}$.
2: Show that there exists a polynomial $f(x, y)$ in two variables whose image is the open interval $(0, \infty)$.
3: Evaluate $\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \frac{n}{n^{2}+j^{2}}$.
4: Let $f(x)$ be a continuous real-valued function on $[0,1]$ for which $\int_{0}^{1} f(x) d x=0$ and $\int_{0}^{1} x f(x) d x=$ 1. Prove that $|f(x)|>4$ for some $x \in(0,1)$.

5: Prove that there are no four consecutive non-zero binomial coefficients $\binom{n}{r},\binom{n}{r+1},\binom{n}{r+2},\binom{n}{r+3}$ in arithmetic progression.

6: Find the constant C such that $\int_{0}^{x} t^{2021} e^{t} \sin t d t=p(x) e^{x} \sin x+q(x) e^{x} \cos x+C$ for some polynomials $p(x)$ and $q(x)$.

7: Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be positive real sequences such that $\lim _{n \rightarrow \infty} \frac{a_{n}}{n}=u>0$ and $\lim _{n \rightarrow \infty}\left(\frac{b_{n}}{a_{n}}\right)^{n}=v>0$. Prove that $\lim _{n \rightarrow \infty} b_{n}-a_{n}=u \log v$.

8: Prove Lucas's Theorem: Let m and n be positive integers and let p be a prime. Suppose $m=$ $\left(m_{k} m_{k-1} \cdots m_{1} m_{0}\right)_{p}$ and $n=\left(n_{k} n_{k-1} \cdots n_{1} n_{0}\right)_{p}$ in base- p. Prove that $\binom{m}{n} \equiv \prod_{i=0}^{k}\binom{m_{i}}{n_{i}}(\bmod p)$.

9: Prove that $\prod_{k=1}^{n-1} \sin \left(\frac{k \pi}{n}\right)=2^{1-n} n$.
10: Let a_{1}, a_{2}, \ldots be a sequence of real numbers satisfying $a_{i+j} \leq a_{i}+a_{j}$ for all $i, j=1,2, \ldots$. Prove that

$$
a_{1}+\frac{a_{2}}{2}+\frac{a_{3}}{3}+\cdots+\frac{a_{n}}{n} \geq a_{n}
$$

for all positive integers n.

11: Consider the Chebyshev polynomials defined by $T_{0}(x)=1, T_{1}(x)=x$ and $T_{n}(x)=2 x T_{n-1}(x)-$ $T_{n-2}(x)$ for $n \geq 2$. Prove that for all $n \geq 2$,

$$
\frac{1}{3}<\int_{1}^{\infty} T_{n}(x)^{-2 / n} d x<\frac{1}{3} \sqrt[n]{4}
$$

12: Let p be a prime and let $n \geq 1$ be an integer. For any polynomial $f(x) \in \mathbb{F}_{p}[x]$, let $V(f)=$ $\#\left\{f(a): a \in \mathbb{F}_{p}\right\}$. Let $a_{n-1}, \ldots, a_{2} \in \mathbb{F}_{p}$ be arbitrary. Prove that

$$
\sum_{a_{1} \in \mathbb{F}_{p}} V\left(x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x\right) \geq \frac{p^{3}}{2 p-1}
$$

