Week 2: Assorted Problems

1: Prove that for any positive integer n,

$$n^{2} + (n^{2} + 1) + \dots + (n^{2} + n) = (n^{2} + n + 1) + (n^{2} + n + 2) + \dots + (n^{2} + 2n).$$

- 2: For how many positive integers $n \leq 1000$ does the equation $x^{\lfloor x \rfloor} = n$ have a positive real solution?
- 3: Let $a = 256 = 2^8$. Find the unique real number $x > a^2$ such that

$$\log_a \log_a \log_a x = \log_{a^2} \log_{a^2} \log_{a^2} x.$$

- **4:** Let n be a positive integer. Let P(x) be the unique polynomial of degree n such that $P(k^2) = k$ for all $k = 0, 1, \ldots, n$. Find $P((n+1)^2)$.
- **5:** Let f(n) be a nonconstant polynomial with integer coefficients. Show that f(n) is composite for infinitely many values of n.
- **6:** Find all continuous functions $f: \mathbb{R} \to [0, \infty)$ such that

$$f(x+y)^{2} - f(x-y)^{2} = 4f(x)f(y)$$

for all real numbers x, y.

7: Let $f:[a,b]\to\mathbb{R}$ be an increasing continuous function. Prove that

$$(x-a) \int_{x}^{b} f(t) dt + (x-b) \int_{a}^{x} f(t) dt \ge 0$$

for all $x \in [a, b]$.

- 8: Find $\lim_{n \to \infty} \frac{2 \ln 2 + 3 \ln 3 + \dots + n \ln n}{n^2 \ln n}$.
- **9:** Prove that for any integer $n \ge 0$, $f_n(x) = 1 + 2^{-n}x + 3^{-n}x^2 + 4^{-n}x^3 + 5^{-n}x^4$ has no real zero.
- **10:** Compute the number of pairs (a, b) with $a, b \in \{0, 1, 2, 3, 4\}$ such that the maximum of $x^a(1-x)^b + (1-x)^a x^b$ is 2^{1-a-b} .
- 11: A sequence of positive integers a_1, a_2, a_3, \ldots satisfies

$$a_{n+1} = n \left\lfloor \frac{a_n}{n} \right\rfloor + 1$$

for all positive integers n. If $a_{30} = 30$, how many possible values can a_1 take?

12: Let M be the $2^n \times n$ matrix whose rows consist of all 2^n distinct vectors of ± 1 's of length n. Change any subset of the entries to 0. Show that some nonempty subset of the rows of the resulting matrix sums to the zero vector.