Week 7: Assorted Problems

- 1: Solve the system of linear equations $x_1 + x_2 + x_3 = x_2 + x_3 + x_4 = \cdots = x_{99} + x_{100} + x_1 = x_{100} + x_1 + x_2 = 0$.
- **2:** Show that for any positive integer n, $\sqrt[n]{n} < 1 + \sqrt{\frac{2}{n-1}}$.
- **3:** Find all continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that f(f(f(x))) = x for all $x \in \mathbb{R}$.
- **4:** Show that $\left\lfloor \frac{p}{q} \right\rfloor + \left\lfloor \frac{2p}{q} \right\rfloor + \dots + \left\lfloor \frac{(q-1)p}{q} \right\rfloor = \left\lfloor \frac{q}{p} \right\rfloor + \left\lfloor \frac{2q}{p} \right\rfloor + \dots + \left\lfloor \frac{(p-1)q}{p} \right\rfloor$ where p and q be coprime positive integers.
- **5:** Let ϕ denote the Euler-phi function. Show that for any positive integers a and n, $n \mid \phi(a^n 1)$.
- **6:** Show that any prime divisor of the *n*-th Fermat number $2^{2^n} + 1$ is congruent to 1 modulo 2^{n+1} .
- 7: Let $f(x) = \sum_{k=1}^{n} a_k \sin(kx)$ with $a_1, \dots, a_n \in \mathbb{R}$ and $n \ge 1$. Suppose $|f(x)| \le |\sin x|$ for all x. Show that $\left|\sum_{k=1}^{n} k a_k\right| \le 1$.
- 8: Solve in positive integers the equation $x^{x+y} = y^{y-x}$.
- **9:** Fix any positive r > 0. Draw a ball of radius r at every nonzero lattice point $(\mathbb{Z}^3 \{(0,0,0)\})$ in \mathbb{R}^3 . Show that any line that passes through the origin will intersect some ball.
- **10:** Let $n \geq 3$. Show that $\sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \sum_{i=1}^n |i \sigma(i)| = 0$.
- 11: Let f be a polynomial with integer coefficient with f(0) = 0, f(1) = 1. Suppose p is a prime such that $f(k) \equiv 0, 1 \pmod{p}$ for all integers k. Show that $\deg f \geq p-1$.
- **12:** Let $p \equiv 3 \pmod{4}$ be a prime. Show that $\prod_{1 \le x < y \le \frac{p-1}{2}} (x^2 + y^2) \equiv (-1)^{\lfloor \frac{p+1}{8} \rfloor} \pmod{p}$.

Hints

- 1: Add all the equations together.
- **2:** Let $x = \sqrt[n]{n} 1$. Expand $(1+x)^n$ and consider the x^2 term.
- **3:** Show f is bijective and then strictly increasing.
- **4:** Consider the box $[0, p] \times [0, q]$ and the line joining (0, 0) and (p, q). How many lattice points are there in the box (including the boundary) that lie beneath the line?
- **5:** What is the order of a in $\mathbb{Z}_{a^n-1}^{\times}$?
- **6:** Let k be the order of 2 mod p. Then $k \mid 2^{n+1}$. If $k \mid 2^n$, then $2^k 1 \mid 2^{2^n} 1$.
- 7: Compute f'(0) by definition.
- **8:** Use the prime factorizations of x and y to show $x \mid y$.
- 9: Take a cylinder symmetric around the origin, centered around the line of radius r long enough to have volume more than 8. By Minkowski's Theorem, it contains a nonzero lattice point.
- **10:** Consider the matrix $A(x) = (x^{|i-j|})_{i,j}$. Then the desired sum equals $\frac{d}{dx} \det(A(x))\Big|_{x=1}$.
- 11: Suppose $\deg(f) \leq p-2$ and apply the interpolation formula with $f(0), \ldots, f(p-1)$. Show that the coefficient of x^{p-1} is not 0 mod p.
- 12: Take a primitive root $a \mod p$ and set $x = a^2$. Then the product on the left is $\prod (x^i + x^j)$. Compare the two Vandermonde determinant $\prod (x^i x^j)$ and $\prod (x^{2i} x^{2j})$.