Week 1: Assorted Problems

- 1: Let n_1, \ldots, n_k be k integers and let m_1, \ldots, m_k be a permutation of them. Show that $|n_1 m_1| + |n_2 m_2| + \cdots + |n_k m_k|$ is even.
- **2:** Let u and v be positive real numbers. Minimize the larger of $2u + v^{-2}$ and $2v + u^{-2}$.
- **3:** Let $f: \mathbb{R} \to \mathbb{R}$ be such that $f(x) \leq x$ and $f(x+y) \leq f(x) + f(y)$ for all $x, y \in \mathbb{R}$. Show that f(x) = x for all $x \in \mathbb{R}$.
- **4:** Let $(a_n)_{n=1}^{\infty}$ be a sequence of nonnegative real numbers such that $1 + a_{m+n} \leq (1 + a_m)(1 + a_n)$ for all $m, n \in \mathbb{N}$. Show that the sequence $(x_n)_{n=1}^{\infty}$ defined by $x_n = \sqrt[n]{1 + a_n}$ converges.
- 5: Let $S(n) = \sum_{m=1}^{n} \frac{1}{\langle \sqrt{m} \rangle}$, where $\langle x \rangle$ denotes the integer closest to x. Give a general formula for $S(n^2)$.
- **6:** Give an example of positive integers a, b, c, d, e such that a, b^2, c^3, d^4, e^5 is a non-constant arithmetic progression.
- 7: Suppose that P_1, P_2, \ldots, P_6 are points in \mathbb{R}^3 . Let D be the 6×6 matrix whose (i, j)-entry is the square of the distance between P_i and P_j . Show that $\det(D) = 0$.
- 8: Let n be a positive integer. Suppose that f(x) is differentiable on [0,1] with f(0)=0 and f(1)=1. Prove that there exist n (distinct) numbers x_1, \ldots, x_n in (0,1) for which $\sum_{i=1}^n \frac{1}{f'(x_i)} = n$.
- **9:** Suppose f(x) is twice-differentiable on [0,1] and $f(0)f(1) \geq 0$. Prove

$$\int_0^1 |f'(x)| \, dx \le 2 \int_0^1 |f(x)| \, dx + \int_0^1 |f''(x)| \, dx.$$

- **10:** Let $S_n = \left(\frac{1}{n}\right)^n + \left(\frac{2}{n}\right)^n + \dots + \left(\frac{n-1}{n}\right)^n$. Compute $\lim_{n \to \infty} S_n$.
- 11: Let $\mathbb{Q}[x]$ denote the vector space over \mathbb{Q} of polynomials with rational coefficients in x. Find all \mathbb{Q} -linear maps $\Phi: \mathbb{Q}[x] \to \mathbb{Q}[x]$ that send irreducible polynomials to irreducible polynomials.
- 12: Which integers can be written in the form $\frac{(x+y+z)^2}{xyz}$ where x,y,z are positive integers?

Hints

- 1: How are the parities of x and |x| related?
- 2: The standard trick to bounding $u + u^{-2}$ is to apply the AMGM inequality to $u/2 + u/2 + u^{-2}$.
- **3:** x = 0 + x, 0 = x + (-x).
- **4:** First show x_n is bounded below and above and then show $\lim x_n = \inf x_n$.
- **5:** Find the contribution of $1/\langle \sqrt{m} \rangle$ from all such m where $\langle \sqrt{m} \rangle = k$.
- **6:** Scaling an arithmetic progression gives another arithmetic progression.
- 7: Write D as the sum of 5 rank 1 matrices.
- 8: Pick n-1 convenient values between 0 and 1 to apply the intermediate value theorem and then the mean value theorem.
- **9:** Suppose |f'(x)| takes a minimum of m at $x = x_0$ and a maximum of M at $x = x_1$.
- **10:** For a fixed k, $(1 k/n)^n$ approaches e^{-k} from below.
- 11: If f and g are two polynomials such that f + cg is irreducible for all $c \in \mathbb{Q}$, then either g = 0 or f is degree 1 and g is a constant.
- 12: Show one can assume $x \le y \le z \le x + y$ and use it to find a small upper bound for $(x+y+z)^2/xyz$.