Special K

1: Determine all pairs of polynomials (p(x), q(x)) with complex coefficients such that

$$p(x^2) = q(x)^2$$

$$q(x^2) = p(x)^2.$$

We have $p(x^4) = q(x^2)^2 = p(x)^4$. Let a_i denote the coefficient of x^i in p(x). If $a_0 \neq 0$, then we must have $a_1 = 0$ since $p(x^4)$ has no x-term, which then implies $a_2 = 0$ and so on. Hence p(x) = 1 or ζ_3 or ζ_3^2 in this case. If $a_0 = 0$, we may write p(x) = r(x)x for some complex polynomial q(x). Then r(x) satisfies the same condition as p(x). Hence $p(x) = cx^n$ for some nonnegative integer n and $c = 0, 1, \zeta_3, \zeta_3^2$.

2: Let N be a 2019-digit integer with no zero digits. Show that one can replace some (or none) but not all of the digits of N by 0 to obtain an integer divisible by 2019.

For k = 0, 1, ..., 2018, let a_k denote the number obtained by replacing the first k digits of N by 0. If any of the a_k is divisible by 2019, then we are done. Otherwise, there exists k < l such that $a_k \equiv a_l \pmod{2019}$. Then 2019 divides $a_k - a_l$ which is obtained from N by replacing some digits by 0.

3: Does there exist a nonzero polynomial p(x,y) in 2 variables with real coefficients such that for any real number a,

$$p(|a|, |a^2|) = 0,$$

where |a| is the greatest integer less than or equal to a?

The answer is no. Suppose for a contradiction that such a polynomial p(x,y) exist. Then for any integer n,

$$p(n, n^2) = \dots = p(n, n^2 + 2n) = 0.$$

As a polynomial in y, for any fixed n, p(n,y) has absolutely bounded degrees. Hence for n large enough, p(n,y) is the zero polynomial. This is clearly not possible since the leading coefficient of p(x,y) when viewed as a polynomial in y is a fixed polynomial in x with finitely many roots.

4: Find all functions $f: \mathbb{Q} \to \mathbb{Q}$ such that f(1) = 2 and f(xy) = f(x)f(y) - f(x+y) + 1 for all $x, y \in \mathbb{Q}$.

Setting y = 1 gives f(x + 1) = f(x) + 1 for all x. By induction, for any integer m, f(m) = m + 1 and f(x + m) = f(x) + m for all x. Take any rational number n/m with $n, m \in \mathbb{Z}$. Then

$$f((n/m) \cdot m) = f(n/m)(m+1) - (f(n/m) + m) + 1.$$

Solving gives f(n/m) = n/m + 1. Hence f(x) = x + 1 for all $x \in \mathbb{Q}$. It is easy to check that this function does satisfy the given formula.

5: Show that for any positive integer n, there exists a positive integer m, integers d_{ij} for $1 \le i \le m$ and $1 \le j \le n$ and rational numbers c_1, \ldots, c_m such that as polynomials in x_1, \ldots, x_n ,

$$\sum_{i=1}^{m} c_i \left(\sum_{j=1}^{n} d_{ij} x_j \right)^k = \begin{cases} x_1 x_2 \cdots x_n & \text{if } k = n, \\ 0 & \text{if } k = 1, \dots, n-1. \end{cases}$$

Solution 1. We denote each sum $\sum_{j=1}^{n} d_{ij}x_j$ by $F_i(x_1,\ldots,x_n)$. We construct the data (c_i,F_i) by induction on n. When n=1, we simply take $c_1=1$ and $F_1(x_1)=x_1$. Suppose now $(c_i,F_i(x_1,\ldots,x_n))$ is given for $i=1,\ldots,m$. We construct the data for n+1. For $i=1,\ldots,m$, we set $G_i(x_1,\ldots,x_{n+1})=F_i(x_1,\ldots,x_n)+x_{n+1}$. Then

$$\sum_{i=1}^{m} c_i G_i(x_1, \dots, x_{n+1})^k = \sum_{j=0}^{k} {k \choose j} x_{n+1}^{k-j} \sum_{i=1}^{m} c_i F_i(x_1, \dots, x_n)^j$$
$$= x_{n+1}^k \sum_{i=1}^{m} c_i + \sum_{i=1}^{m} c_i F_i(x_1, \dots, x_n)^k + H(x_1, \dots, x_{n+1})$$

where

$$H(x_1, \dots, x_{n+1}) = \begin{cases} (n+1)x_1x_2 \cdots x_nx_{n+1} & \text{if } k = n+1, \\ 0 & \text{if } k = 1, \dots, n. \end{cases}$$

Hence, for i = 1, ..., m, we set $d_i = c_i/(n+1)$. For i = m+1, ..., 2m, we set $G_i(x_1, ..., x_{n+1}) = F_{i-m}(x_1, ..., x_n)$ and $d_i = -c_{i-m}/(n+1)$. Finally for i = 2m+1, we set $G_i = x_{n+1}$ and $d_i = -\sum_{j=1}^m c_j/(n+1)$. Then the data (d_i, G_i) for i = 1, ..., 2m+1 does the job.

Solution 2. For every nonempty subset S of $\{1, 2, ..., n\}$, let $F_S(x_1, ..., x_n) = \sum_{i \in S} x_i$ and let $c_S = (-1)^{|S|}$. We compute the coefficient of each monomial in $\sum_S c_S F_S^k$. Consider first a monomial without one of the indeterminants, say, x_n . For any subset T of $\{1, 2, ..., n-1\}$, the contribution from F_T^k and $F_{T \cup \{n\}}^k$ are equal but $c_T = -c_{T \cup \{n\}}$. Hence the total contribution is 0. If k < n, then there is not enough degree for every indeterminants to appear and so the sum is 0. If k = n, then only the term $x_1x_2 \cdots x_n$ can appear and it can only show up when $S = \{1, 2, ..., n\}$. The coefficient of $x_1x_2 \cdots x_n$ in $(x_1 + \cdots + x_n)^n$ is n!. Therefore, replacing every c_S by $c_S/((-1)^n n!)$ does the job.

6: Given any two coprime positive integers a, b with a < b, one defines a Fibonacci sequence $\{F_n\}$ by

$$F_0 = a$$
, $F_1 = b$, $F_n = F_{n-1} + F_{n-2}, \forall n \ge 2$.

Show that if $\{F_n\}$ is a Fibonacci sequence where for every prime p, there exists an index $n \geq 1$ such that p divides F_n , then a and b are consecutive terms in the standard Fibonacci sequence that starts with 0 and 1.

First note that the sequence that starts with b-a and a is simply the given sequence shifted one term to the left and thus satisfies the same divisibility condition. If b-a < a, then we may conclude via induction. It remains to study the case $b-a \ge a$.

The key invariant property we need is

$$F_n^2 - F_{n-1}F_{n+1} = F_n^2 - F_{n-1}(F_n + F_{n-1}) = -(F_{n-1}^2 - F_{n-2}F_n).$$

Let $d=b^2-a(a+b)=F_1^2-F_0F_2$. Then for any $n\geq 2$, $F_n^2-F_{n-1}F_{n+1}=\pm d$. Suppose for a contradiction that d has a prime divisor p. By assumption, $p\mid F_n$ for some $n\geq 1$. Then $p\mid F_{n-1}F_{n+1}$ and so $p\mid F_{n-1}$ or $p\mid F_{n+1}$. In either case, p divides two consecutive terms in the sequence and so p divides every term in sequence, contradicting the coprimeness of F_0 and F_1 . Thus, $d=\pm 1$. It is then easy to see the only solution when $b-a\geq a$ is a=1 and b=2, which are two consecutive terms in the standard Fibonacci sequence.

1: Let N be a 2019-digit integer with no zero digits. Show that one can replace some (or none) but not all of the digits of N by 0 to obtain an integer divisible by 2019.

For k = 0, 1, ..., 2018, let a_k denote the number obtained by replacing the first k digits of N by 0. If any of the a_k is divisible by 2019, then we are done. Otherwise, there exists k < l such that $a_k \equiv a_l \pmod{2019}$. Then 2019 divides $a_k - a_l$ which is obtained from N by replacing some digits by 0.

2: Does there exist a nonzero polynomial p(x,y) in 2 variables with real coefficients such that for any real number a,

$$p(\lfloor a \rfloor, \lfloor a^2 \rfloor) = 0,$$

where |a| is the greatest integer less than or equal to a?

The answer is no. Suppose for a contradiction that such a polynomial p(x, y) exist. Then for any integer n,

$$p(n, n^2) = \cdots = p(n, n^2 + 2n) = 0.$$

As a polynomial in y, for any fixed n, p(n,y) has absolutely bounded degrees. Hence for n large enough, p(n,y) is the zero polynomial. This is clearly not possible since the leading coefficient of p(x,y) when viewed as a polynomial in y is a fixed polynomial in x with finitely many roots.

3: Let \mathbb{N} denote the set of all positive integers. Find all injective functions $f: \mathbb{N} \to \mathbb{N}$ such that f(1) = 2, f(2) = 4 and f(f(m) + f(n)) = f(f(m)) + f(n) for all $m, n \in \mathbb{N}$.

Setting m=1 gives f(f(n)+2)=f(n)+4. From this, one obtains via induction that f(2k)=2k+2 for any $k\in\mathbb{N}$. Since f is injective, it sends odd integers bigger than 1 to positive odd integers. Suppose $\alpha>1$ is odd with $f(\alpha)=\beta$. Taking m=1 and $n=\alpha$ gives $f(\beta+2)=\beta+4$. Taking $m=\alpha$ and n=1 gives $f(\beta+2)=f(\beta)+2$. Hence $f(\beta)=\beta+2$ and the same induction can be used to show $f(\beta+2k)=\beta+2k+2$ for all $k\geq 0$. Suppose now the odd integer $\alpha>1$ is chosen so that $\beta=f(\alpha)$ is minimal. If $f(3)>\beta$ and then $f(3)=f(\beta+(f(3)-\beta-2))$. Injectivity then gives f(3)=5 and the above implies f(n)=n+2 for all odd integers n>1 and so $\beta=5$, contradicting $f(3)>\beta$. Hence we must have $f(3)=\beta$. Since $f(\beta+2k)=\beta+2k+2$ for all $k\geq 0$, we see there cannot be any more odd integers between 3 and β . In other words, f(3)=5. Therefore, f(1)=2 and f(n)=n+2 for all $n\geq 2$.

To check this function works, note that $f(n) \ge 2$ for all $n \in \mathbb{N}$ and $f(m) + f(n) \ge 2$ for all $m, n \in \mathbb{N}$. Hence f(f(m) + f(n)) = f(m) + f(n) + 2 and f(f(m)) + f(n) = f(m) + 2 + f(n).

4: Show that for any positive integer n, there exists a positive integer m, integers d_{ij} for $1 \le i \le m$ and $1 \le j \le n$ and rational numbers c_1, \ldots, c_m such that as polynomials in x_1, \ldots, x_n ,

$$\sum_{i=1}^{m} c_i \left(\sum_{j=1}^{n} d_{ij} x_j \right)^k = \begin{cases} x_1 x_2 \cdots x_n & \text{if } k = n, \\ 0 & \text{if } k = 1, \dots, n-1. \end{cases}$$

Solution 1. We denote each sum $\sum_{j=1}^n d_{ij}x_j$ by $F_i(x_1,\ldots,x_n)$. We construct the data (c_i,F_i) by induction on n. When n=1, we simply take $c_1=1$ and $F_1(x_1)=x_1$. Suppose now $(c_i,F_i(x_1,\ldots,x_n))$ is given for $i=1,\ldots,m$. We construct the data for n+1. For $i=1,\ldots,m$, we set $G_i(x_1,\ldots,x_{n+1})=F_i(x_1,\ldots,x_n)+x_{n+1}$. Then

$$\sum_{i=1}^{m} c_i G_i(x_1, \dots, x_{n+1})^k = \sum_{j=0}^{k} {k \choose j} x_{n+1}^{k-j} \sum_{i=1}^{m} c_i F_i(x_1, \dots, x_n)^j$$
$$= x_{n+1}^k \sum_{i=1}^{m} c_i + \sum_{i=1}^{m} c_i F_i(x_1, \dots, x_n)^k + H(x_1, \dots, x_{n+1})$$

where

$$H(x_1, \dots, x_{n+1}) = \begin{cases} (n+1)x_1x_2 \cdots x_nx_{n+1} & \text{if } k = n+1, \\ 0 & \text{if } k = 1, \dots, n. \end{cases}$$

Hence, for i = 1, ..., m, we set $d_i = c_i/(n+1)$. For i = m+1, ..., 2m, we set $G_i(x_1, ..., x_{n+1}) = F_{i-m}(x_1, ..., x_n)$ and $d_i = -c_{i-m}/(n+1)$. Finally for i = 2m+1, we set $G_i = x_{n+1}$ and $d_i = -\sum_{j=1}^m c_j/(n+1)$. Then the data (d_i, G_i) for i = 1, ..., 2m+1 does the job.

Solution 2. For every nonempty subset S of $\{1, 2, \ldots, n\}$, let $F_S(x_1, \ldots, x_n) = \sum_{i \in S} x_i$ and let $c_S = (-1)^{|S|}$. We compute the coefficient of each monomial in $\sum_S c_S F_S^k$. Consider first a monomial without one of the indeterminants, say, x_n . For any subset T of $\{1, 2, \ldots, n-1\}$, the contribution from F_T^k and $F_{T \cup \{n\}}^k$ are equal but $c_T = -c_{T \cup \{n\}}$. Hence the total contribution is 0. If k < n, then there is not enough degree for every indeterminants to appear and so the sum is 0. If k = n, then only the term $x_1x_2\cdots x_n$ can appear and it can only show up when $S = \{1, 2, \ldots, n\}$. The coefficient of $x_1x_2\cdots x_n$ in $(x_1+\cdots+x_n)^n$ is n!. Therefore, replacing every c_S by $c_S/((-1)^n n!)$ does the job.

5: Evaluate the sum
$$\sum_{n=0}^{\infty} \frac{2}{n!} \frac{1}{n^4 + n^2 + 1}$$
.

Do the only thing sensible at each step and it works!

$$\sum_{n=0}^{\infty} \frac{2}{n!} \frac{1}{n^4 + n^2 + 1} = 2 + \sum_{n=1}^{\infty} \frac{1}{n!n} \left(\frac{1}{n^2 - n + 1} - \frac{1}{n^2 + n + 1} \right)$$

$$= 2 + 1 - \sum_{n=1}^{\infty} \frac{1}{n^2 + n + 1} \left(\frac{1}{n!n} - \frac{1}{(n+1)!(n+1)} \right)$$

$$= 3 - \sum_{n=1}^{\infty} \frac{1}{n^2 + n + 1} \frac{n^2 + n + 1}{n(n+1)(n+1)!}$$

$$= 3 - \sum_{n=1}^{\infty} \frac{1}{n(n+1)!} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

$$= 3 - \sum_{n=1}^{\infty} \frac{1}{(n+1)!} \left(\frac{1}{n!} - \frac{1}{(n+1)!} \right)$$

$$= \frac{5}{2} + \sum_{n=2}^{\infty} \frac{1}{(n+1)!}$$

$$= \frac{5}{2} + (e - 1 - 1 - \frac{1}{2}) = e.$$

All the rearrangements are justified because all the series involved are absolutely convergent.

6: Given any two coprime positive integers a, b with a < b, one defines a Fibonacci sequence $\{F_n\}$ by

$$F_0 = a$$
, $F_1 = b$, $F_n = F_{n-1} + F_{n-2}, \forall n \ge 2$.

Show that if $\{F_n\}$ is a Fibonacci sequence where for every prime p, there exists an index $n \geq 1$ such that p divides F_n , then a and b are consecutive terms in the standard Fibonacci sequence that starts with 0 and 1.

First note that the sequence that starts with b-a and a is simply the given sequence shifted one term to the left and thus satisfies the same divisibility condition. If b-a < a, then we may conclude via induction. It remains to study the case $b-a \ge a$.

The key invariant property we need is

$$F_n^2 - F_{n-1}F_{n+1} = F_n^2 - F_{n-1}(F_n + F_{n-1}) = -(F_{n-1}^2 - F_{n-2}F_n).$$

Let $d=b^2-a(a+b)=F_1^2-F_0F_2$. Then for any $n\geq 2$, $F_n^2-F_{n-1}F_{n+1}=\pm d$. Suppose for a contradiction that d has a prime divisor p. By assumption, $p\mid F_n$ for some $n\geq 1$. Then $p\mid F_{n-1}F_{n+1}$ and so $p\mid F_{n-1}$ or $p\mid F_{n+1}$. In either case, p divides two consecutive terms in the sequence and so p divides every term in sequence, contradicting the coprimeness of F_0 and F_1 . Thus, $d=\pm 1$. It is then easy to see the only solution when $b-a\geq a$ is a=1 and b=2, which are two consecutive terms in the standard Fibonacci sequence.