Solutions to the Special K Problems, 2018

1: Let C be the circle of radius 1 centred at (0,1). Let D be the circle of radius 2 centred at (a,2) where a > 0 and D is externally tangent to C. Let E be the circle of radius r centred at (x,0) where 0 < x < a and E is externally tangent to both C and D. Find the values of x and r.

Solution: The distance between the centres of two externally tangent circles is the sum of their radii. Applying this rule to the circles C and D gives $a^2+1^2=(2+1)^2=9$, and so $a=2\sqrt{2}$. Applying the rule to the circles C and E gives $x^2+1=(1+r)^2=1+2r+r^2$ and so $x^2=2r+r^2$. Applying the rule to the circles D and E gives $(a-x)^2+4=(2+r)^2$, and so $a^2-2ax+x^2=4r+r^2$. Put in $a=2\sqrt{2}$ and $x^2=2r+r^2$ to get $8-4\sqrt{2}x+2r+r^2=4r+r^2$, and so $4\sqrt{2}x=8-2r$, that is $2\sqrt{2}x=4-r$. Square both sides to get $8x^2=16-8r+r^2$. Put in $x^2=2r+r^2$ to get $8(2r+r^2)=16-8r+r^2$, and so $7r^2+24r-16=0$ hence (7r-4)(r+4)=0. Since r>0 we must have $r=\frac{4}{7}$. Since $2\sqrt{2}x=4-r=\frac{24}{7}$, we have $x=\frac{6\sqrt{2}}{7}$.

2: Let a_n be the n^{th} positive integer k such that $|\sqrt{k}|$ divides k. Find n such that $a_n = 600$.

Solution: We have $\lfloor \sqrt{k} \rfloor = \ell$ when $\sqrt{k} - 1 < \ell \le \sqrt{k}$, or equivalently when $\ell \le \sqrt{k} < \ell + 1$, or equivalently when $\ell^2 \le k < (\ell+1)^2$. In this case, $\ell = \lfloor \sqrt{k} \rfloor$ divides k when k is a multiple of ℓ with $\ell^2 \le k < (\ell+1)^2$, that is when $k = \ell^2$, $k = \ell^2 + \ell$ or $k = \ell^2 + 2\ell = (\ell+1)^2 - 1$. Thus the values of k for which $\lfloor \sqrt{k} \rfloor$ divides k are

 $1^2, 1^2 + 1, 1^2 + 2, 2^2, 2^2 + 2, 2^2 + 4, 3^2, 3^2 + 3, 3^2 + 6, 4^2, 4^2 + 4, 4^2 + 8, 5^2, 5^2 + 5, 5^5 + 10, \cdots$

and so we have $a_{3m-2} = m^2$, $a_{3m-1} = m^2 + m$ and $a_{3m} = m^2 + 2m = (m+1)^2 - 1$. Note that $24^2 = 576$ and $24^2 + 24 = 600$, so for m = 24 we have $600 = m^2 + m = a_{3m-1} = a_{71}$. Thus we can take n = 71 to get $a_n = 600$.

3: A Mersenne prime is a prime of the form $p = 2^k - 1$ for some positive integer k. For a positive integer n, let $\sigma(n)$ be the sum of the positive divisors of n. Show that $\sigma(n)$ is a power of 2 if and only if n is a product of distinct Mersenne primes.

Solution: When n=1 we have $\sigma(n)=1=2^0$ which (for convenience) we consider to be a product of zero Mersenne primes. Let $n \geq 2$, say $n = \prod_{i=1}^{\ell} p_i^{m_i}$ where the p_i are distinct primes and $m_i \geq 1$. Recall (or show) that

$$\sigma(n) = \prod_{i=1}^{\ell} (1 + p_i + p_i^2 + \dots + p_i^{m_\ell}).$$

If n is a product of distinct Mersenne primes then each $m_i = 1$ and each p_i is a Mersenne prime, say $p_i = 2^{k_i} - 1$, so we have $\sigma(n) = \prod_{i=1}^{\ell} (1 + p_i) = \prod_{i=1}^{\ell} 2^{k_i} = 2^{k_1 + k_2 + \dots + k_{\ell}}$. Suppose, conversely, that $\sigma(n)$ is a power of 2, say $\sigma(n) = 2^k$. We need to show that each $m_i = 1$

Suppose, conversely, that $\sigma(n)$ is a power of 2, say $\sigma(n) = 2^k$. We need to show that each $m_i = 1$ and that each p_i is a Mersenne prime. Since $\prod_{i=1}^{\ell} \left(1 + p_i + \dots + p_i^{m_i}\right) = \sigma(n) = 2^k$ it follows, from unique factorization, that each term $(1 + p_i + \dots + p_i^{m_i})$ is a power of 2, say

$$(1 + p_i + \dots + p_i^{m_i}) = 2^{k_i}.$$

It suffices to show that each $m_i = 1$ since this implies $1 + p_i = 2^{k_i}$ so that each p_i is a Mersenne prime. Suppose, for a contradiction, that $m_i \geq 2$. Note that p_i is odd since if p_i was even then $1 + p_i + \cdots + p_i^{m_i}$ would be odd. Note that m_i must be odd since if m_i was even then $1 + p_i + \cdots + p_i^{m_i}$ would be odd. Let $m_i = 2l_i + 1$ and note that $\ell_i \geq 1$. Thus we have

$$2^{k_i} = (1 + p_i + p_i^2 + \dots + p_i^{2\ell_i + 1}) = (1 + p_i)(1 + p_i^2 + p_i^4 + \dots + p_i^{2\ell_i})$$

and so $1 + p_i$ and $1 + p_i^2 + \dots + p_i^{2\ell_i}$ are both powers of 2. Note that ℓ_i must be odd since if ℓ_i was even then $1 + p_i^2 + p_i^4 + \dots + p_i^{2\ell_i}$ would be odd. Let $\ell_i = 2r_i + 1$ and note that $r_i \ge 0$. Then

$$2^{k_i} = (1 + p_i)(1 + p_i^2 + \dots + p_i^{2r_i+1}) = (1 + p_i)(1 + p_i^2)(1 + p_i^4 + \dots + p_i^{4r_i}).$$

Thus $(1+p_i^2)$ is a power of 2. But this is not possible, since $p_i \neq 2$ and p_i is odd so that $p_i^2 + 1 = 2 \mod 4$.

4: Let $\{a_n\}$ be a sequence of positive real numbers such that $\sum_{n=1}^{\infty} a_n < \infty$. Show that there exists a sequence $\{c_n\}$ of positive real numbers with $\lim_{n\to\infty} c_n = \infty$ such that $\sum_{n=1}^{\infty} c_n a_n < \frac{1}{2}$.

Solution: Let $S = \sum_{n=1}^{\infty} a_n$. Recall (or show) that for all $\epsilon > 0$ there exists $m \in \mathbf{Z}^+$ such that $\sum_{n=m_{\ell}}^{\infty} a_n < \epsilon$.

For each $0 \le \ell \in \mathbf{Z}$ choose m_{ℓ} with $1 = m_0 < m_1 < m_2 < m_3 < \cdots$ such that $\sum_{n=m_{\ell}}^{\infty} a_n < \frac{S}{4^{\ell}}$. For all $n \in \mathbf{Z}^+$ with $m_{\ell-1} \le n < m_{\ell}$, let $c_n = \frac{2^{\ell-3}}{S}$. Then

$$\sum_{n=1}^{\infty} c_n a_n = \sum_{n=1}^{m_1 - 1} c_n a_n + \sum_{n=m_1}^{m_2 - 1} c_n a_n + \sum_{n=m_2}^{m_3 - 1} c_n a_n + \sum_{n=m_3}^{m_4 - 1} c_n a_n + \cdots$$

$$= \sum_{n=1}^{m_1 - 1} \frac{1}{4S} a_n + \sum_{n=m_1}^{m_2 - 1} \frac{1}{2S} a_n + \sum_{n=m_2}^{m_3 - 1} \frac{1}{S} a_n + \sum_{n=m_3}^{m_4 - 1} \frac{2}{S} a_n + \cdots$$

$$= \frac{1}{4S} \sum_{n=1}^{m_1 - 1} a_n + \frac{1}{2S} \sum_{n=m_1}^{m_2 - 1} a_n + \frac{1}{S} \sum_{n=m_2}^{m_3 - 1} a_n + \frac{2}{S} \sum_{n=m_3}^{m_4 - 1} a_n + \cdots$$

$$< \frac{1}{4S} \sum_{n=1}^{\infty} a_n + \frac{1}{2S} \sum_{n=m_1}^{\infty} a_n + \frac{1}{S} \sum_{n=m_2}^{\infty} a_n + \frac{2}{S} \sum_{n=m_3}^{\infty} a_n + \cdots$$

$$< \frac{1}{4S} \cdot S + \frac{1}{2S} \cdot \frac{S}{4} + \frac{1}{S} \cdot \frac{S}{4^2} + \frac{2}{S} \cdot \frac{S}{4^3} + \cdots$$

$$= \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \cdots = \frac{1}{2}.$$

5: Find the minimum possible value of f'(2) given that f(x) is a polynomial with nonnegative real coefficients such that f(1) = 1 and f(2) = 3.

Solution: When $\deg(f)=0$ we cannot have f(1)=1 and f(2)=3. When $\deg(f)=1$, to get f(1)=1 and f(2)=3 we must have f(x)=2x-1, but then the coefficients of f(x) are not all nonnegative. Let $f(x)=\sum_{k=0}^n a_k x^k=a_0+a_1 x+a_2 x^2+\cdots+a_n x^n$ where $n\geq 2$ and each $a_k\geq 0$. We have f(1)=2 and f(2)=3 when

$$a_0 + a_1 + a_2 + a_3 + \dots + a_n = 1$$
 (1)
 $a_0 + 2a_1 + 4a_2 + 8a_3 + \dots + 2^n a_n = 3$ (2)

Subtract (1) from (2) to get $a_1 + 3a_2 + 7a_3 + \cdots + (2^n - 1)a_n = 2$ (3) and subtract (3) from (1) to get $a_0 - 2a_2 - 6a_3 - \cdots - (2^n - 2)a_n = -1$ (4), then rewrite equations (3) and (4) as

$$a_1 = 2 - 3a_2 - 7a_3 - \dots - (2^n - 1)a_n$$
 (5)

(6)

$$a_0 = -1 + 2a_2 + 6a_3 + \dots + (2^n - 2)a_n$$

From (6) we see that since $a_0 \ge 0$ we must have $2a_2 + 6a_3 + 14a_4 + \cdots + (2^n - 2)a_n \ge 0 \ge 1$, that is

$$a_2 + 3a_3 + 7a_4 + \dots + (2^{n-1} - 1)a_n \ge \frac{1}{2}$$
 (7)

Also, we have $f'(x) = \sum_{k=1}^{n} k a_k x^{k-1} = a_1 + 2a_2 x + 3a_3 x^2 + \dots + na_n x^n$, and so

$$f'(2) = a_1 + 4a_2 + 12a_3 + \dots + n2^{n-1}a_n$$

$$= (2 - 3a_2 - 7a_3 - \dots - (2^n - 1)a_n) + 4a_2 + 12a_3 + \dots + n2^{n-1}a_n , \text{ by } (5)$$

$$= 2 + a_2 + 5a_3 + \dots + (n2^{n-1} - 2^n + 1)a_n$$

$$= 2 + a_2 + 5a_3 + \dots + ((n-2)2^{n-1} + 1)a_n$$

$$\geq 2 + a_2 + 3a_3 + \dots + (2^{n-1} - 1)a_n$$

$$\geq 2 + \frac{1}{2} = \frac{5}{2}.$$

Note that equality can be attained by choosing $a_2 = \frac{1}{2}$ and $a_k = 0$ for $k \ge 3$ then using (5) and (6) to get $a_1 = \frac{1}{2}$ and $a_0 = 0$. Indeed when $f(x) = \frac{1}{2}x + \frac{1}{2}x^2$, we have $f'(x) = \frac{1}{2} + x$, f(1) = 1, f(2) = 3 and $f'(2) = \frac{5}{2}$.

6: Let $a_0 = a_1 = 1$ and let $a_{2n} = a_{n-1} + a_n$ and $a_{2n+1} = a_n$ for $n \ge 1$. Define $f: \mathbf{Z}^+ \to \mathbf{Q}^+$ by $f(n) = \frac{a_n}{a_{n-1}}$. Show that f is bijective.

Solution: First we note that $f(1) = \frac{a_1}{a_0} = 1$ and for $k \ge 1$ we have

$$f(2k) = \frac{a_{2k}}{a_{2k-1}} = \frac{a_{k-1} + a_k}{a_{k-1}} = 1 + \frac{a_k}{a_{k-1}} = 1 + f(k) \text{ , and}$$

$$f(2k+1) = \frac{a_{2k+1}}{a_{2k}} = \frac{a_k}{a_k + a_{k-1}} = \frac{1}{\frac{a_k + a_{k-1}}{a_k}} = \frac{1}{1 + \frac{a_k}{a_{k-1}}} = \frac{1}{1 + \frac{1}{f(k)}}$$

and, in particular, f(2k) > 1 and f(2k+1) < 1. Suppose, for a contradiction, that f is not injective. Let n be the smallest positive integer such that f(n) = f(m) for some m > n. We cannot have n = 1 since when m > 1 is even we have f(m) > 1 and when m > 1 is odd we have f(m) < 1. If n is even then m must also be even since f(m) = f(n) > 1, but if we let n = 2k and m = 2l then we have $f(n) = f(m) \Longrightarrow f(2k) = f(2l) \Longrightarrow 1 + f(k) = 1 + f(l) \Longrightarrow f(k) = f(l)$, which contradicts the choice of n. If n is odd then m must also be odd since f(m) = f(n) < 1, but if we let n = 2k + 1 and m = 2l + 1 then we have $f(n) = f(m) \Longrightarrow f(2k+1) = f(2l+1) \Longrightarrow \frac{1}{1+\frac{1}{f(k)}} = \frac{1}{1+\frac{1}{f(l)}} \Longrightarrow f(k) = f(l)$, which again contradicts the choice of n. Thus f is injective.

It remains to show that f is surjective. Let $m \in \mathbf{Z}^+$ and suppose, inductively, that for all $a, b \in \mathbf{Z}^+$ with a < m and b < m there exists $n \in \mathbf{Z}^+$ such that $f(n) = \frac{a}{b}$. Let $a, b \in \mathbf{Z}^+$ with $a \le m$ and $b \le m$. If a < m and b < n then, by the induction hypothesis, we can choose $n \in \mathbf{Z}^+$ such that $f(n) = \frac{a}{b}$. If a = b = m then we can choose n = 1 to get $f(n) = 1 = \frac{a}{b}$. If a = m and b < m then $1 \le a - b < m$ so, by the induction hypothesis, we can choose $k \in \mathbf{Z}^+$ such that $f(k) = \frac{a-b}{b}$ and then for n = 2k we have $f(n) = f(2k) = 1 + f(k) = 1 + \frac{a-b}{b} = \frac{a}{b}$. Finally, if a < m and b = m then, by the induction hypothesis, we can choose $k \in \mathbf{Z}^+$ such that $f(k) = \frac{a}{b-a}$ and then for n = 2k + 1 we have $f(n) = f(2k + 1) = \frac{1}{1 + \frac{1}{f(k)}} = \frac{1}{1 + \frac{b-a}{a}} = \frac{a}{b}$. It follows, by induction, that for all $a, b \in \mathbf{Z}^+$ there exists $n \in \mathbf{Z}^+$ such that $f(n) = \frac{a}{b}$, hence f is surjective.

Solutions to the Big E Problems, 2018

1: Let C be the sphere of radius 1 centred at (0,1,1). Let D be the sphere of radius 2 centred at (a,2,2) where a > 0 and D is externally tangent to C. Let E be the sphere of radius r centred at (x,r,r) where 0 < x < a and E is externally tangent to both C and D. Find the values of x and r.

Solution: The distance between the centres of two externally tangent circles is the sum of their radii. Applying this rule to the circles C and D gives $a^2+2\cdot 1^2=(2+1)^2=9$, and so $a=\sqrt{7}$. Applying the rule to the circles C and E gives $x^2+2(1-r)^2=(1+r)^2$ and so $x^2=-1+6r-r^2$. Applying the rule to the circles D and E gives $(a-x)^2+2(2-r)^2=(2+r)^2$, and so $a^2-2ax+x^2=-4+12r-r^2$. Put in $a=\sqrt{7}$ and $x^2=-1+6r-r^2$ to get $7-2\sqrt{7}x+(-1+6r-r^2)=-4+12r-r^2$, and so $2\sqrt{7}x=10-6r$, that is $\sqrt{7}x=5-3r$. Square both sides to get $7x^2=25-30r+9r^2$. Put in $x^2=-1+6r-r^2$ to get $7(-1+6r-r^2)=25-30r+9r^2$, and so $16r^2-72r+32=0$ hence $2r^2-9r+4=0$, that is (2r-1)(r-4)=0. Thus either $r=\frac{1}{2}$ or r=4. Also, since $\sqrt{7}x=5-3r$ we have $x=\frac{5-3r}{7}$. If we had r=4 then we would have $x=\frac{5-12}{\sqrt{7}}=-\sqrt{7}$ which is not possible, since x>0. Thus we must have $r=\frac{1}{2}$ and $x=\frac{5-\frac{3}{2}}{\sqrt{7}}=\frac{\sqrt{7}}{2}$.

2: Let a_n be the n^{th} positive integer k such that $|\sqrt[3]{k}|$ divides k. Find n such that $a_n = 600$.

Solution: Let us say that k is allowable when $\lfloor \sqrt[3]{k} \rfloor$ divides k. We have $\lfloor \sqrt[3]{k} \rfloor = \ell$ when $\sqrt[3]{k} - 1 < \ell \le \sqrt[3]{k}$, or equivalently when $\ell \le \sqrt[3]{k} < \ell + 1$, or equivalently when $\ell^3 \le k < (\ell+1)^3$. Since $\ell^3 + (3\ell+3)\ell = (\ell+1)^3 - 1$, the allowable values of k with $\lfloor \sqrt[3]{k} \rfloor = \ell$ are

$$\ell^3$$
, $\ell^3 + \ell$, $\ell^3 + 2\ell$, \dots , $\ell^3 + (3\ell + 3)\ell$.

Thus for each $\ell \in \mathbf{Z}^+$, there are exactly $3\ell + 4$ allowable values of k with $\lfloor \sqrt[3]{k} \rfloor = \ell$. The total number of allowable values of k with $1 \le k < 8^3 = 512$ is $\sum_{\ell=1}^7 (3\ell + 4) = 7 + 10 + 13 + 16 + 19 + 22 + 25 = 112$. Since $600 - 512 = 88 = 11 \cdot 8$, There are 12 more allowable values of k with $8^3 = 512 \le k \le 600$, namely $8^3, 8^3 + 8, 8^3 + 2 \cdot 8, \dots, 8^3 + 11 \cdot 8 = 600$. Thus when n = 112 + 12 = 124 we have $a_n = 600$.

3: Define $f:(1,\infty)\to\mathbf{R}$ by $f(x)=\int_{-\infty}^{x^2}\frac{dt}{\ln t}$. Find the range of f.

Solution: We claim that f is increasing. Let $g(u) = \int_0^u \frac{dt}{\ln t}$. By the Fundamental Theorem of Calculus, we

have
$$g'(u) = \frac{1}{\ln u}$$
. Since $f(x) = \int_e^{x^2} \frac{dt}{\ln t} - \int_e^x \frac{dt}{\ln t} = g(x^2) - g(x)$, we have

$$f'(x) = 2x g'(x^2) - g'(x) = \frac{2x}{\ln(x^2)} - \frac{1}{\ln x} = \frac{2x}{2\ln x} - \frac{1}{\ln x} = \frac{x-1}{\ln x}$$

and so f'(x) > 0 for all x > 1. Thus f is increasing, as claimed. Because $f:(0,\infty) \to \mathbf{R}$ is increasing and continuous, it follows that the range of f is the interval (a,b) where $a = \lim_{x \to 1^+} f(x)$ and $b = \lim_{x \to \infty} f(x)$. For all $t \in [x,x^2]$ we have $\ln t \le \ln(x^2) = 2 \ln x$, hence $\frac{1}{\ln t} \ge \frac{1}{2 \ln x}$, and so

$$f(x) = \int_{x}^{x^{2}} \frac{dt}{\ln t} \ge \int_{x}^{x^{2}} \frac{dt}{2 \ln x} = \frac{x^{2} - x}{2 \ln x}.$$

By l'Hospital's Rule, $\lim_{x \to \infty} \frac{x^2 - x}{2 \ln x} = \lim_{x \to \infty} \frac{2x - 1}{2/x} = \lim_{x \to \infty} \left(x^2 - \frac{1}{2}x\right) = \infty$ and so $b = \lim_{x \to \infty} f(x) = \infty$.

Make the substitution $\ln t = u$, so that $t = e^u$ and $dt = e^u du$ to get $f(x) = \int_{-\pi}^{x^2} \frac{dt}{\ln t} = \int_{\ln \pi}^{2 \ln x} \frac{e^u}{u} du$. When $\ln x \le u \le 2 \ln x$ we have $x \le e^u \le x^2$, so for all x > 1

$$f(x) = \int_{\ln x}^{2\ln x} \frac{e^u}{u} du \le \int_{\ln x}^{2\ln x} \frac{x^2}{u} du = \left[x^2 \ln u \right]_{u=\ln x}^{2\ln x} = x^2 \ln \left(\frac{2\ln x}{\ln x} \right) = x^2 \ln 2$$

$$f(x) = \int_{\ln x}^{2 \ln x} \frac{e^u}{u} du \ge \int_{\ln x}^{2 \ln x} \frac{x}{u} du = \left[x \ln u \right]_{u = \ln x}^{2 \ln x} = x \ln \left(\frac{2 \ln x}{\ln x} \right) = x \ln 2.$$

Since $x \ln 2 \le f(x) \le x^2 \ln 2$ for all x > 1 and $\lim_{x \to 1^+} x \ln 2 = \ln 2 = \lim_{x \to 1^+} x^2 \ln 2$ it follows, from the Squeeze Theorem, that $a = \lim_{x \to 1^+} f(x) = \ln 2$. Thus the range of f(x) is the interval $(\ln 2, \infty)$.

4: Let p be a prime number, let \mathbf{Z}_p be the field of integers modulo p, and let $M_3(\mathbf{Z}_p)$ be the ring of 3×3 matrices with entries in \mathbf{Z}_p . Find the number of functions $F: \mathbf{Z} \to M_3(\mathbf{Z}_p)$ such that F(k+l) = F(k) + F(l) and F(kl) = F(k)F(l) for all $k, l \in \mathbf{Z}$.

Solution: When R is a ring, a function $F: \mathbf{Z} \to R$ such that F(k+l) = F(k) + F(l) and F(kl) = F(k)F(l) for all $k, l \in \mathbf{Z}$ is called a **ring homomorphism**. Recall (or prove) that the ring homomorphisms $F: \mathbf{Z} \to R$ are the maps of the form F(k) = ka for some $a \in R$ with $a^2 = 1$. It follows that the number of ring homomorphisms $F: \mathbf{Z} \to M_3(\mathbf{Z}_p)$ is equal to the number of matrices $A \in M_3(\mathbf{Z}_p)$ with $A^2 = A$.

When F is a field, a matrix $A \in M_n(F)$ such that $A^2 = A$ is called a **projection matrix**. Recall (or prove) that a projection matrix $A \in M_n(F)$ is determined by its image and its kernel and that we have $F^n = \operatorname{Im} A \oplus \operatorname{Ker} A$. It follows that the number of projection matrices $A \in M_n(F)$ with $\operatorname{rank}(A) = r$ is equal to the number of pairs (U, V) where U and V are subspaces of F^n with $\dim(U) = r$ and $\dim(V) = n - r$ and $U \cap V = \{0\}$.

Let $F = \mathbf{Z}_p$. The number of r-dimensional subspaces $U \subseteq F^n$ is equal to $\frac{(p^n-1)(p^n-p)(p^n-p^2)\cdots(p^n-p^{r-1})}{(p^r-1)(p^r-p)(p^r-p^2)\cdots(p^n-p^{r-1})}$ because to choose an independent set $\{u_1,u_2,\cdots,u_r\}$ there are p^n-1 ways to choose $u_1 \in F^n \setminus \{0\}$, then p^n-p ways to choose $u_2 \in F^n \setminus \{0\}$, then p^n-p^2 ways to choose $u_3 \in F^n \setminus \{0\}$, then p^n-p^2 ways to choose $u_3 \in F^n \setminus \{0\}$, then p^n-p^2 ways to choose $u_3 \in F^n \setminus \{0\}$, and so on, so the number of independent sets $\{u_1,u_2,\cdots,u_r\}$ is equal to $(p^n-1)(p^n-p)\cdots(p^n-p^{r-1})$, and when $U = \{u_1,u_2,\cdots,u_r\}$, a similar argument shows that the number of different bases $\{v_1,v_2,\cdots,v_r\}$ for U is equal to $(p^n-1)(p^n-p)\cdots(p^n-p^{n-1})$. Another similar argument shows that, once we have chosen an r-dimensional subspace $U \subseteq F^n$, the number of (n-r)-dimensional subspaces $V \subseteq F^n$ with $U \cap V = \{0\}$ is equal to $\frac{(p^n-p^n)(p^n-p^{n-1})\cdots(p^n-p^{n-1})}{(p^{n-r}-1)(p^{n-r}-p)\cdots(p^{n-r}-p^{n-r-1})}$.

Letting a_r be the number of projection matrices $A \in M_3(\mathbf{Z}_p)$ with rank(A) = r, the total number of projection matrices is

$$a_0 + a_1 + a_2 + a_3 = 1 + \frac{(p^3 - 1)}{(p - 1)} \cdot \frac{(p^3 - p)(p^3 - p^2)}{(p^2 - 1)(p^2 - p)} + \frac{(p^3 - 1)(p^3 - p)}{(p^2 - 1)(p^2 - p)} \cdot \frac{(p^3 - p^2)}{(p - 1)} + 1$$

$$= 1 + (p^2 + p + 1)p^2 + (p^2 + p + 1)p^2 + 1$$

$$= 2(p^4 + p^3 + p^2 + 1).$$

5: Let $a_0 = a_1 = 1$ and let $a_{2n} = a_{n-1} + a_n$ and $a_{2n+1} = a_n$ for $n \ge 1$. Define $f: \mathbf{Z}^+ \to \mathbf{Q}^+$ by $f(n) = \frac{a_n}{a_{n-1}}$. Show that f is bijective.

Solution: First we note that $f(1) = \frac{a_1}{a_0} = 1$ and for $k \ge 1$ we have

$$\begin{split} f(2k) &= \frac{a_{2k}}{a_{2k-1}} = \frac{a_{k-1} + a_k}{a_{k-1}} = 1 + \frac{a_k}{a_{k-1}} = 1 + f(k) \text{ , and} \\ f(2k+1) &= \frac{a_{2k+1}}{a_{2k}} = \frac{a_k}{a_k + a_{k-1}} = \frac{1}{\frac{a_k + a_{k-1}}{a_k}} = \frac{1}{1 + \frac{a_k}{a_{k-1}}} = \frac{1}{1 + \frac{1}{f(k)}} \end{split}$$

and, in particular, f(2k) > 1 and f(2k+1) < 1. Suppose, for a contradiction, that f is not injective. Let n be the smallest positive integer such that f(n) = f(m) for some m > n. We cannot have n = 1 since when m > 1 is even we have f(m) > 1 and when m > 1 is odd we have f(m) < 1. If n is even then m must also be even since f(m) = f(n) > 1, but if we let n = 2k and m = 2l then we have $f(n) = f(m) \Longrightarrow f(2k) = f(2l) \Longrightarrow 1 + f(k) = 1 + f(l) \Longrightarrow f(k) = f(l)$, which contradicts the choice of n. If n is odd then m must also be odd since f(m) = f(n) < 1, but if we let n = 2k + 1 and m = 2l + 1 then we have $f(n) = f(m) \Longrightarrow f(2k+1) = f(2l+1) \Longrightarrow \frac{1}{1+\frac{1}{f(k)}} = \frac{1}{1+\frac{1}{f(l)}} \Longrightarrow f(k) = f(l)$, which again contradicts the choice of n. Thus f is injective.

It remains to show that f is surjective. Let $m \in \mathbf{Z}^+$ and suppose, inductively, that for all $a, b \in \mathbf{Z}^+$ with a < m and b < m there exists $n \in \mathbf{Z}^+$ such that $f(n) = \frac{a}{b}$. Let $a, b \in \mathbf{Z}^+$ with $a \le m$ and $b \le m$. If a < m and b < n then, by the induction hypothesis, we can choose $n \in \mathbf{Z}^+$ such that $f(n) = \frac{a}{b}$. If a = b = m then we can choose n = 1 to get $f(n) = 1 = \frac{a}{b}$. If a = m and b < m then $1 \le a - b < m$ so, by the induction hypothesis, we can choose $k \in \mathbf{Z}^+$ such that $f(k) = \frac{a - b}{b}$ and then for n = 2k we have $f(n) = f(2k) = 1 + f(k) = 1 + \frac{a - b}{b} = \frac{a}{b}$. Finally, if a < m and b = m then, by the induction hypothesis, we can choose $k \in \mathbf{Z}^+$ such that $f(k) = \frac{a}{b - a}$ and then for n = 2k + 1 we have $f(n) = f(2k + 1) = \frac{1}{1 + \frac{1}{f(k)}} = \frac{1}{1 + \frac{b - a}{a}} = \frac{a}{b}$. It follows, by induction, that for all $a, b \in \mathbf{Z}^+$ there exists $n \in \mathbf{Z}^+$ such that $f(n) = \frac{a}{b}$, hence f is surjective.

6: Let $n \in \mathbf{Z}^+$ and let $N = \{1, 2, 3, \dots, n\}$. Let S be a set of subsets of N with the property that for all $A, B \subseteq N$, if $A \in S$ and $A \subseteq B$ then $B \in S$. Define $f : [0,1] \to \mathbf{R}$ by $f(x) = \sum_{A \in S} x^{|A|} (1-x)^{|N \setminus A|}$. Show that f is nondecreasing.

Solution: For $A \in S$ and $x \in [0,1]$, let $R_A(x)$ be the rectangular box $R_A(x) = \prod_{k=1}^n I_{A,k}(x)$ where $I_{A,k}(x)$ is the interval

$$I_{A,k}(x) = \begin{cases} [0,x) \text{ if } k \in A, \\ [x,1] \text{ if } k \notin A. \end{cases}$$

Note that when $A, B \in S$ with $A \neq B$, the boxes $R_A(x)$ and $R_B(x)$ are disjoint (because when k lies in exactly one of the two sets A and B, the intervals $I_{A,k}(x)$ and $I_{B,k}(x)$ are disjoint). It follows hat

$$f(x) = \sum_{A \in S} x^{|A|} (1 - x)^{|N \setminus A|} = \sum_{A \in S} \operatorname{Vol}(R_A(x)) = \operatorname{Vol}(\bigcup_{A \in S} R_A(x)).$$

Let $0 \le x \le y \le 1$. We claim that $\bigcup_{A \in S} R_A(x) \subseteq \bigcup_{A \in S} R_A(y)$. Let $t = (t_1, t_2, \dots, t_n) \in \bigcup_{A \in S} R_A(x)$. Choose $A \in S$ such that $t \in R_A(x)$. Since $t \in R_A(x)$ we have $t_k \in I_{A,k}(x)$ for all k, that is $t_k \in [0, x)$ when $k \in A$ and $t_k \in [x, 1]$ when $k \notin A$, and hence $A = \{k \in N | t_k < x\}$. Let $B = \{k \in N | t_k < y\}$ so that $t_k \in [0, y)$ when $k \in B$ and $t_k \in [y, 1]$ when $k \notin B$. Since $x \le y$ we have $A \subseteq B$. Since $A \subseteq B$ and $A \in S$ we have $B \in S$. Since $t_k \in [0, y)$ when $t_k \in B$ and $t_k \in [y, 1]$ when $t_k \notin B$ we have $t_k \in B$ we have $t_k \in B$ and $t_k \in B$. This shows that $t_k \in B$ and $t_k \in B$ an

$$f(x) = \text{Vol}(\bigcup_{A \in S} R_A(x)) \le \text{Vol}(\bigcup_{A \in S} R_A(y)) = f(y)$$

and so f is nondecreasing, as required.