SPECIAL K

Saturday November 5, 2017 10:00 am - 1:00 pm

- 1: Solve $\sin\left(x + \frac{\pi}{3}\right) + \cos x = \frac{1}{2}$ for $x \in \mathbf{R}$.
- **2:** Let 0 < r < 1. Let A(r) be the area of the region bounded by the line through (0,0) and (1,1-r), the line through (0,r) and (1,1), the line through (0,1) and (1-r,0), and the line through (r,1) and (1,0). Find the value of r such that $A(r) = \frac{1}{25}$.
- **3:** Let $S = \{1, 2, \dots, n\}$. Find the number of sets $\{A, B\}$ with $A, B \subseteq S$ and $A \cap B \neq \emptyset$.
- **4:** For $x \in \mathbf{R}$, let $\langle x \rangle = x \lfloor x \rfloor$. For $1 \leq n \in \mathbf{Z}$, let $x_n = \langle \frac{n}{\sqrt{2}} \rangle$. Show that the sequence (x_n) has a decreasing subsequence (x_{n_k}) with $x_{n_k} \to 0$ as $k \to \infty$.
- **5:** Let R be a ring with identity. Let n be an integer with $n \ge 2$. Suppose that $x^n = x$ for all $x \in R$. Show that $x^{n-1}y = y x^{n-1}$ for all $x, y \in R$.
- **6:** Let n be a positive integer. Show that $\prod_{k=1}^{n} \sin \frac{k\pi}{2n} = \frac{\sqrt{n}}{2^{n-1}}$ and hence find the product of all the lengths of the sides and diagonals of a regular 2n-gon inscribed in the unit circle.

BIG E Saturday November 5, 2017 10:00 am - 1:00 pm

- **1:** Evaluate the infinite product $\prod_{n=1}^{\infty} \left(\frac{1}{2^n}\right)^{1/3^n}$.
- **2:** A point p is chosen at random on the surface of the sphere $(x-1)^2 + y^2 + z^2 = 1$ and a point q is chosen at random on the surface of the sphere $(x+1)^2 + y^2 + z^2 = 1$. Find the probability that the distance between p and q is at most 1.
- **3:** Let n and m be positive integers with n < m. Let A_1, A_2, \dots, A_m be nonempty subsets of $\{1, 2, \dots, n\}$. Show that there exist nonempty disjoint subsets $I, J \subset \{1, 2, \dots, m\}$ such that $\bigcup_{i \in I} A_i = \bigcup_{j \in J} A_j$.
- **4:** For $x \in \mathbf{R}$, let $\langle x \rangle = x \lfloor x \rfloor$. For $n \in \mathbf{Z}^+$, let $S_n = \{k \in \mathbf{Z}^+ | \langle \frac{n}{k} \rangle \geq \frac{1}{2} \}$. Find $\sum_{k \in S_n} \varphi(k)$, where φ is the Euler phi function.
- **5:** Let R be a ring with identity. Let n be an integer with $n \ge 2$. Suppose that $x^n = x$ for all $x \in R$. Show that $x^{n-1}y = y x^{n-1}$ for all $x, y \in R$.
- **6:** Find $\lim_{n\to\infty} \int_0^\pi \frac{\sin x}{5+3\cos nx} \ dx$.