Solutions to the Special K Problems, 2016

1: Let S be the circle of radius 1 centred at O, let T be the circle of radius 1 centred at Q and suppose S and T are tangent at P. A ray from O intersects S at the point A then intersects T at the points B and C. Suppose the distance from A to B is equal to the distance from B to C. Find the area of triangle APB.

Solution: Let x = |AB| and let $\theta = \angle AOP$. By the Law of Cosines applied to the triangles OQB and OQC we have

$$\cos \theta = \frac{2^2 + (x+1)^2 - 1^2}{2 \cdot 2(x+1)} = \frac{2^2 + (2x+1)^2 - 1^2}{2 \cdot 2(2x+1)}$$
$$(x^2 + 2x + 4)(2x+1) = (4x^2 + 4x + 4)(x+1)$$
$$2x^3 + 5x^2 + 10x + 4 = 4x^3 + 8x^2 + 8x + 4$$
$$2x^3 + 3x^2 - 2x = 0$$
$$x(2x-1)(x+2) = 0$$

Since x > 0 we must have $x = \frac{1}{2}$. Note that triangle OQC is isoceles with |OQ| = |OC| = 2 and |QC| = 1. Using Pythagoras' Theorem to find the height h from vertex O, the area of triangle OQC is

$$|OQC| = \frac{1}{2} \, bh = \frac{1}{2} \cdot 1 \cdot \sqrt{2^2 - \left(\frac{1}{2}\right)^2} = \frac{1}{2} \cdot \frac{\sqrt{15}}{2} = \frac{\sqrt{15}}{4}.$$

Since $|AB| = \frac{1}{4}|OC|$ and $|OP| = \frac{1}{2}|OQ|$, the area of triangle APB is

$$|ABP| = \frac{1}{4}|OCP| = \frac{1}{8}|OQC| = \frac{\sqrt{15}}{32}.$$

2: Let m be a positive integer. Let $a_1 = m$ and let $a_{n+1} = \lfloor \sqrt{n \, a_n} \rfloor$ for $n \geq 1$. Show that there exists a positive integer N such that for all $n \geq N$ we have $a_n = n - 3$.

Solution: Let $b_n = a_n - n + 3$ for $n \ge 1$. We need to show that there exists a positive integer N such that for all $n \ge N$ we have $b_n = 0$. Note that $a_1 = m \ge 1$, $a_2 = \lfloor \sqrt{1 \cdot a_1} \rfloor \ge \lfloor \sqrt{1} \rfloor = 1$, $a_3 = \lfloor \sqrt{2 \cdot a_2} \rfloor \ge \lfloor \sqrt{2} \rfloor = 1$ and $a_4 = \lfloor \sqrt{3 \cdot a_3} \rfloor \ge \lfloor \sqrt{3} \rfloor = 1$ and so $b_1 \ge 3$, $b_2 \ge 2$, $b_3 \ge 1$ and $b_4 \ge 0$. Let $n \ge 4$ and suppose, inductively that $b_n \ge 0$, that is $a_n - n + 3 \ge 0$. Then $a_n \ge n - 3$ so we have

$$na_n \ge n^2 - 3n \ge (n^2 - 3n) - (n - 4) = n^2 - 4n + 4 = (n - 2)^2$$
.

Thus $\sqrt{na_n} \ge n-2$ hence $a_{n+1} = \lfloor \sqrt{na_n} \rfloor \ge \lfloor n-2 \rfloor = n-2$, and so $b_{n+1} = a_{n+1} - n + 2 \ge (n-2) - n + 2 = 0$. By induction, it follows that $b_n \ge 0$ for all $n \ge 1$ (with $b_n > 0$ for n = 1, 2, 3).

Next, we claim that if $b_n > 0$ then $b_{n+1} < b_n$. Let $n \ge 1$ and suppose that $b_n > 0$, that is $a_n - n + 3 > 0$. Then $n < a_n + 3$ so that $n \le a_n + 2$ and so $na_n \le a_n^2 + 2a_n < (a_n + 1)^2$ hence $\sqrt{na_n} < a_n + 1$. Thus $a_{n+1} = \lfloor \sqrt{na_n} \rfloor \le \sqrt{na_n} < a_n + 1$. It follows that $b_{n+1} = a_{n+1} - n + 2 < (a_n + 1) - n + 2 = a_n - n + 3 = b_n$. Thus the sequence $\{b_n\}$ is strictly decreasing for as long as $b_n > 0$. It follows that there exists a positive integer N such that $b_N \le 0$. Since $b_n \ge 0$ for all n, we must have $b_N = 0$. We also remark that since $b_1, b_2, b_3 > 0$ we must have $N \ge 4$.

Let $n \ge N \ge 4$ and suppose, inductively, that $b_n = 0$, that is $a_n = n - 3$. Then $na_n = n(n - 3) = n^2 - 3n$. Notice that

$$(n-2)^2 = (n^2 - 3n) - (n-4) \le n^2 - 3n < (n^2 - 3n) + (n+1) = (n-1)^2,$$

so we have $(n-2)^2 \le na_n < (n-1)^2$. Thus $n-2 \le \sqrt{na_n} < n-1$, so $a_{n+1} = \lfloor \sqrt{na_n} \rfloor = n-2$, hence $b_{n+1} = a_{n+1} - n + 2 = 0$. By induction, it follows that $b_n = 0$ for all $n \ge N$, as required.

3: For positive integers n and k, let $\sigma(n,k)$ be the sum of all the divisors d of n with $\frac{n}{k} \leq d \leq k$. Find

$$S_k = \sum_{n=1}^{k^2} \sigma(n, k).$$

Solution: For each $d \le k$, the number d occurs as a term in the sum $\sigma(n, k)$ when d|n and $n \le kd$, that is when $n \in \{1 \cdot d, 2 \cdot d, 3 \cdot d, \dots, k \cdot d\}$. Thus each $d \le k$ occurs exactly k times in the double sum S_k , and so

$$S_k = \sum_{d=1}^k kd = k(1+2+3+\cdots+k) = \frac{k^2(k+1)}{2}.$$

4: A game begins with a pile of n coins. Players A and B take turns with A going first. At each turn a player removes a nonzero perfect square number of coins from the pile. The player who removes the last coin wins. Show that there are infinitely many values of n for which player B has a winning strategy.

Solution: Let W be the set of all $n \geq 0$ such that the player whose turn it is wins when presented with a pile of n coins, let L be the set of $n \geq 0$ such that the player whose turn it is loses when presented with a pile of n coins, and let S be the set of perfect squares $S = \{1, 4, 9, \cdots\}$. Note that $W \neq \emptyset$; indeed $0 \in L$ (since a player who is presented with 0 coins has just lost the game) and $1 \in L$ (since given a pile of 2 coins the player is forced to remove 1 coin and lose). Also note that $1 \in L$ by induction; indeed given $1 \in L$ if we suppose that every $1 \in L$ and that $1 \in L$ then it follows that $1 \in L$ when there exists $1 \in L$ when no such $1 \in L$ exists $1 \in L$ when no such $1 \in L$ exists.

Suppose, for a contradiction, that L is finite. Let $m=\max(L)$ so that for all n>m we have $n\in W$. Consider the number $n=m^2+m+1$. Note that n>m so we have $n\in W$. For $k\geq m+1$ we have $n-k^2\leq n-(m+1)^2=(m^2+m+1)-(m^2+2m+1)=-m<0$ so when k>m we cannot remover $s=k^2$ coins. For $k\leq m$ we have $n-k^2\geq n-m^2=(m^2+m+1)-m^2=m+1>m$ so that $n-k^2\in W$. Thus when k>m the player cannot remove $s=k^2$ coins and when $k\leq m$ and $s=k^2$ we have $s-k^2>m$ so that $s-k^2\in W$ and so when the player removes s coins their opponent wins. But this shows that $n\in L$ giving the desired contradiction.

5: Let $f:[0,1] \to \mathbf{R}$ with f(0) > 0 and f(1) < 0. Suppose that there exists a continuous function $g:[0,1] \to \mathbf{R}$ such that f+g is increasing. Show that there exists $c \in (0,1)$ such that f(c) = 0.

Solution: Choose a continuous function $g:[0,1]\to \mathbf{R}$ such that the function h=f+g is increasing. Let $P=\left\{x\in[0,1]\middle|f(x)\geq0\right\}$ and let $c=\sup P$. We claim that f(c)=0. Let $x\in P$. Since $x\in P$ we have $f(x)\geq0$. Since $x\in P$ and $c=\sup P$ we have $x\leq c$. Since $x\leq c$ and h is increasing we have $h(x)\leq h(c)$. Thus $g(x)\leq f(x)+g(x)=h(x)\leq h(c)$. Since g is continuous with $g(x)\leq h(c)$ for all $x\in P$ and $c=\sup P$, it follows that $g(c)\leq h(c)$. Since $g(c)\leq h(c)=f(c)+g(c)$ we have $f(c)\geq0$.

Since $f(c) \ge 0$ we have $g(c) \le f(c) + g(c) = h(c)$. Since h is increasing and $c \le 1$ we have $h(c) \le h(1)$. Since f(1) < 0 we have h(1) = f(1) + g(1) < g(1). Thus $g(c) \le h(c) \le h(1) < g(1)$. By the Intermediate Value Theorem, we can choose t with $c \le t \le 1$ such that g(t) = h(c). Since h is increasing and $c \le t$ we have $h(c) \le h(t)$. Thus $g(t) = h(c) \le h(t) = f(t) + g(t)$ and so $f(t) \ge 0$. Since $f(t) \ge 0$ we have $t \in P$. Since $t \in P$ and $c \le t$ and $c = \sup P$ we have c = t. Thus g(c) = g(t) = h(c) = f(c) + g(c) and so f(c) = 0, as claimed. Finally, note that since $f(0) \ne 0$ and $f(1) \ne 0$ and f(c) = 0, we cannot have $f(c) \in \{0, 1\}$ so we have $c \in (0, 1)$.

6: Let m be a positive integer. Let S be a set of m-element subsets of \mathbf{Z} . Suppose that for all $A, B \in S$ we have $A \cap B \neq \emptyset$. Show that there exists a finite set $F \subseteq \mathbf{Z}$ such that for all $A, B \in S$ we have $A \cap B \cap F \neq \emptyset$.

Solution: Consider the following statement about positive integers m and n: for all sets S of m-element sets of integers and all sets T of n-element sets of integers, if $A \cap B \neq \emptyset$ for all $A \in S$ and $B \in T$ then there exists a finite set of integers F such that $A \cap B \cap F \neq \emptyset$ for all $A \in S$ and $B \in T$. If we can prove that this statement is true for all positive integers m and n then the problem follows by taking n = m and T = S.

When m = n = 1, this statement is clearly true (indeed if $S = \emptyset$ or $T = \emptyset$ we can take $F = \emptyset$, and if $S \neq \emptyset$ and $T \neq \emptyset$ with say $\{a\} \in S$ and $\{b\} \in T$, then the condition that $A \cap B \neq \emptyset$ for all $A \in S$ and $B \in T$ forces a = b and $S = T = \{\{a\}\}$ so we can take $F = \{a\}$).

Let $m, n \geq 2$ and suppose, inductively, that for all k < m and $\ell < n$, for all sets U of k-element sets of integers, and all sets V of ℓ -element sets of integers, if $X \cap Y \neq \emptyset$ for all $X \in U$ and $Y \in V$ then there exists a finite set of integers G such that $X \cap Y \cap G \neq \emptyset$ for all $X \in U$ and $Y \in V$. Let S be a set of m-element sets and let T be a set of n-element sets, and suppose that $A \cap B \neq \emptyset$ for all $A \in S$ and $B \in T$. We need to show that there exists a finite set of integers F such that $A \cap B \cap F \neq \emptyset$ for all $A \in S$ and $B \in T$.

If $S=\emptyset$ or $T=\emptyset$ then we can let $F=\emptyset$ and then, vacuously, we have $A\cap B\cap F\neq\emptyset$ for all $A\in S$ and $B\in T$. Suppose that $S\neq\emptyset$ and $T\neq\emptyset$. Choose $P\in S$ and $Q\in T$. For subsets $C,D\subseteq P\cup Q$, let $S_C=\left\{A\in S\big|A\cap (P\cup Q)=C\right\}$ and $T_D=\left\{B\in T\big|B\cap (P\cup Q)=D\right\}$. Note that since every $A\in S$ has a nonempty intersection with Q, hence with $P\cup Q$, if follows that S is the union of the sets S_C with $\emptyset\neq C\subseteq P\cup Q$. Similarly, T is the union of the sets T_D with $\emptyset\neq D\subseteq P\cup Q$. For each pair of nonempty subsets $C,D\subseteq P\cup Q$ we shall construct a finite set of integers $F_{C,D}$ such that $A\cap B\cap F_{C,D}\neq\emptyset$ for all $A\in S_C$ and $B\in T_D$. Once we have constructed these sets $F_{C,D}$ we can let F be the union of all these sets $F_{C,D}$, and then we have $A\cap B\cap F\neq\emptyset$ for all $A\in S$ and $B\in T$, so the proof will be complete.

If $C \cap D \neq \emptyset$, we define $F_{C,D} = C \cap D$. Then for $A \in S_C$ we have $A \cap (P \cup Q) = C$ so $C \subseteq A$ hence $C \cap D \subseteq A$ Similarly, for $B \in T_D$ we have $C \cap D \subseteq B$. Thus when $A \in S_C$ and $B \in T_D$ we have $C \cap D \subseteq A \cap B$ so that $A \cap B \cap F_{C,D} = (A \cap B) \cap (C \cap D) = C \cap D \neq \emptyset$.

Suppose that $C \cap D = \emptyset$. Note that for $A \in S_C$ and $B \in T_D$, the sets A and B intersect outside $P \cup Q$. Let $U = \{A \setminus C | A \in S_C\}$ and $V = \{B \setminus D | B \in T_D\}$. Note that U is a set of k-element sets where k = m - |C| < m and V is a set of ℓ -element sets where $\ell = n - |D| < n$. Note that for $A \in S_C$ and $B \in T_D$, if we let $X = A \setminus C \in U$ and $Y = B \setminus D \in V$ then we have $X \cap Y = (A \setminus C) \cap (B \setminus D) = A \cap B \neq \emptyset$. By the induction hypothesis, we can choose a finite set of integers $F_{C,D}$ so that $X \cap Y \cap F_{C,D} \neq \emptyset$ for all $X \in U$ and $Y \in V$. Then for all $A \in S_C$ and $B \in T_D$ we have $A \cap B \cap F_{C,D} = X \cap Y \cap F_{C,D} \neq \emptyset$.

Solutions to the Big E Problems, 2016

1: Define $f: \mathbf{R}^2 \to \mathbf{R}^2$ by f(x,y) = (4x - 3y + 1, 2x - y + 1). Find $f^n(2,1)$ where n is a positive integer and f^n is defined recursively by $f^1 = f$ and $f^k = f \circ f^{k-1}$.

Solution: Let $(x_0, y_0) = (2, 1)$ and let

$$(x_n, y_n) = f^n(2, 1) = f(f^{n-1}(2, 1)) = f(x_{n-1}, y_{n-1}) = (4x_{n-1} - 3y_{n-1} + 1, 2x_{n-1} - y_{n-1} + 1)$$

for $n \ge 1$. Let $a_n = x_n - y_n$ and $b_n = 2x_n - 3y_n$ for $n \ge 0$. Then $a_0 = 1$ and $b_0 = 1$ and

$$a_n = (4x_{n-1} - 3y_{n-1} + 1) - (2x_{n-1} - y_{n-1} + 1) = 2x_{n-1} - 2y_{n-1} = 2a_{n-1}$$

$$b_n = 2(4x_{n-1} - 3y_{n-1} + 1) - 3(2x_{n-1} - y_{n-1} + 1) = 2x_{n-1} - 2y_{n-1} = 2a_{n-1} - 3y_{n-1} - 1 = b_{n-1} - 1$$

for all $n \ge 1$. Since $a_0 = 1$ and $a_n = 2a_{n-1}$ we have $a_n = 2^n$ for all $n \ge 0$. Since $b_0 = 1$ and $b_n = b_{n-1} - 1$ we have $b_n = 1 - n$ for all $n \ge 0$. Since $x_n - y_n = a_n = 2^n$ and $2x_n - 3x_n = b_n = 1 - n$, we have $x_n = 3 \cdot 2^n + n - 1$ and $y_n = 2 \cdot 2^n + n - 1$ for all $n \ge 0$. Thus $f^n(2, 1) = (x_n, y_n) = (3 \cdot 2^n + n - 1, 2 \cdot 2^n + n - 1)$ for all $n \ge 1$.

2: Let p_k denote the k^{th} prime number. Show that $\sum_{n=2}^{\infty} \sum_{k=1}^{\infty} \frac{1}{p_k{}^n} < \frac{3}{2} - \ln 2$.

Solution: Recall that for |x| < 1 we have $\ln(1+x) = x - \frac{1}{2}^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots$. By Abel's Theorem we can also put in x = 1 to get $\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$.

Since $p_1 = 2$ and $p_k = 2k - 1$ for k = 2, 3, 4 and $p_k > 2k - 1$ for k > 4, we have

$$\sum_{n=2}^{\infty} \sum_{k=1}^{\infty} \frac{1}{p_k^n} = \sum_{k=1}^{\infty} \sum_{n=2}^{\infty} \frac{1}{p_k^n} < \sum_{n=2}^{\infty} \frac{1}{2^n} + \sum_{k=2}^{\infty} \sum_{n=2}^{\infty} \frac{1}{(2k-1)^n} = \frac{1}{4} \cdot \frac{1}{1-\frac{1}{2}} + \sum_{k=2}^{\infty} \frac{1}{(2k-1)^2} \cdot \frac{1}{1-\frac{1}{2k-1}}$$

$$= \frac{1}{2} + \sum_{k=2}^{\infty} \frac{1}{(2k-1)(2k-2)} = \frac{1}{2} + \sum_{k=2}^{\infty} \left(\frac{1}{2k-2} - \frac{1}{2k-1} \right) = \frac{1}{2} + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{4} - \frac{1}{5} \right) + \cdots$$

$$= \frac{3}{2} - \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots \right) = \frac{3}{2} - \ln 2.$$

3: A game begins with a pile of n coins. Players A and B take turns with A going first. At each turn a player removes a nonzero perfect square number of coins from the pile. The player who removes the last coin wins. Show that there are infinitely many values of n for which player B has a winning strategy.

Solution: Let W be the set of all $n \geq 0$ such that the player whose turn it is wins when presented with a pile of n coins, let L be the set of $n \geq 0$ such that the player whose turn it is loses when presented with a pile of n coins, and let S be the set of perfect squares $S = \{1, 4, 9, \cdots\}$. Note that $W \neq \emptyset$; indeed $0 \in L$ (since a player who is presented with 0 coins has just lost the game) and $1 \in L$ (since given a pile of 2 coins the player is forced to remove 1 coin and lose). Also note that $1 \in L$ by induction; indeed given $1 \in L$ if we suppose that every $1 \in L$ and that $1 \in L$ then it follows that $1 \in L$ when there exists $1 \in L$ when no such $1 \in L$ exists $1 \in L$ when no such $1 \in L$ exists.

Suppose, for a contradiction, that L is finite. Let $m = \max(L)$ so that for all n > m we have $n \in W$. Consider the number $n = m^2 + m + 1$. Note that n > m so we have $n \in W$. For $k \ge m + 1$ we have $n - k^2 \le n - (m + 1)^2 = (m^2 + m + 1) - (m^2 + 2m + 1) = -m < 0$ so when k > m we cannot remover $s = k^2$ coins. For $k \le m$ we have $n - k^2 \ge n - m^2 = (m^2 + m + 1) - m^2 = m + 1 > m$ so that $n - k^2 \in W$. Thus when k > m the player cannot remove $s = k^2$ coins and when $k \le m$ and $s = k^2$ we have $s - k^2 > m$ so that $s - k^2 \in W$ and so when the player removes s coins their opponent wins. But this shows that $n \in L$ giving the desired contradiction.

4: Let n be a positive integer. Find the largest integer m such that there exist m subsets $S_1, S_2, \dots, S_m \subseteq \{1, 2, 3, \dots, n\}$ with the property that each set S_k has an odd number of elements and each set $S_k \cap S_l$ with $k \neq l$ has an even number of elements.

Solution: We claim that the largest possible value is m=n. Note that there do exist n such sets, namely the sets $S_k=\{k\}$. It remains to show that there can be at most n such sets. Let $m\in \mathbf{Z}^+$ and suppose that we have such sets S_1,S_2,\cdots,S_m . For each index k, let u_k be the column vector $u_k=(u_{k,1},u_{k,2},\cdots,u_{k,n})^T\in\mathbf{Z}_2^n$ with $u_{k,j}=1$ if $j\in S_k$ and $u_{k,j}=0$ if $j\neq S_k$. Let $A=(u_1,u_2,\cdots,u_n)\in M_{n\times m}(\mathbf{Z}_2)$. Since each S_k has an odd number of elements, we have $u_k^Tu_k=1$ for all indices k. Since each $S_k\cap S_\ell$ has an even number of elements, we have $u_k^Tu_\ell=0$ for all $k\neq \ell$. It follows that $A^TA=I$. Let $t=(t_1,t_2,\cdots,t_m)^T\in\mathbf{Z}_2^m$ and suppose that $\sum t_iu_i=0$. Then we have $At=\sum t_iu_i=0$ and so $t=It=A^TAt=0$. This shows that $\{u_1,u_2,\cdots,u_m\}$ is linearly independent, and so $m\leq n$, as required.

5: Let m be a positive integer. Let S be a set of m-element subsets of \mathbf{Z} . Suppose that for all $A, B \in S$ we have $A \cap B \neq \emptyset$. Show that there exists a finite set $F \subseteq \mathbf{Z}$ such that for all $A, B \in S$ we have $A \cap B \cap F \neq \emptyset$.

Solution: Consider the following statement about positive integers m and n: for all sets S of m-element sets of integers and all sets T of n-element sets of integers, if $A \cap B \neq \emptyset$ for all $A \in S$ and $B \in T$ then there exists a finite set of integers F such that $A \cap B \cap F \neq \emptyset$ for all $A \in S$ and $B \in T$. If we can prove that this statement is true for all positive integers m and n then the problem follows by taking n = m and T = S.

When m = n = 1, this statement is clearly true (indeed if $S = \emptyset$ or $T = \emptyset$ we can take $F = \emptyset$, and if $S \neq \emptyset$ and $T \neq \emptyset$ with say $\{a\} \in S$ and $\{b\} \in T$, then the condition that $A \cap B \neq \emptyset$ for all $A \in S$ and $B \in T$ forces a = b and $S = T = \{\{a\}\}$ so we can take $F = \{a\}$).

Let $m,n\geq 2$ and suppose, inductively, that for all k< m and $\ell< n$, for all sets U of k-element sets of integers, and all sets V of ℓ -element sets of integers, if $X\cap Y\neq\emptyset$ for all $X\in U$ and $Y\in V$ then there exists a finite set of integers G such that $X\cap Y\cap G\neq\emptyset$ for all $X\in U$ and $Y\in V$. Let S be a set of m-element sets and let T be a set of n-element sets, and suppose that $A\cap B\neq\emptyset$ for all $A\in S$ and $B\in T$. We need to show that there exists a finite set of integers F such that $A\cap B\cap F\neq\emptyset$ for all $A\in S$ and $B\in T$.

If $S=\emptyset$ or $T=\emptyset$ then we can let $F=\emptyset$ and then, vacuously, we have $A\cap B\cap F\neq\emptyset$ for all $A\in S$ and $B\in T$. Suppose that $S\neq\emptyset$ and $T\neq\emptyset$. Choose $P\in S$ and $Q\in T$. For subsets $C,D\subseteq P\cup Q$, let $S_C=\left\{A\in S\middle|A\cap (P\cup Q)=C\right\}$ and $T_D=\left\{B\in T\middle|B\cap (P\cup Q)=D\right\}$. Note that since every $A\in S$ has a nonempty intersection with Q, hence with $P\cup Q$, if follows that S is the union of the sets S_C with $\emptyset\neq C\subseteq P\cup Q$. Similarly, T is the union of the sets T_D with $\emptyset\neq D\subseteq P\cup Q$. For each pair of nonempty subsets $C,D\subseteq P\cup Q$ we shall construct a finite set of integers $F_{C,D}$ such that $A\cap B\cap F_{C,D}\neq\emptyset$ for all $A\in S_C$ and $B\in T_D$. Once we have constructed these sets $F_{C,D}$ we can let F be the union of all these sets $F_{C,D}$, and then we have $A\cap B\cap F\neq\emptyset$ for all $A\in S$ and $B\in T$, so the proof will be complete.

If $C \cap D \neq \emptyset$, we define $F_{C,D} = C \cap D$. Then for $A \in S_C$ we have $A \cap (P \cup Q) = C$ so $C \subseteq A$ hence $C \cap D \subseteq A$ Similarly, for $B \in T_D$ we have $C \cap D \subseteq B$. Thus when $A \in S_C$ and $B \in T_D$ we have $C \cap D \subseteq A \cap B$ so that $A \cap B \cap F_{C,D} = (A \cap B) \cap (C \cap D) = C \cap D \neq \emptyset$.

Suppose that $C \cap D = \emptyset$. Note that for $A \in S_C$ and $B \in T_D$, the sets A and B intersect outside $P \cup Q$. Let $U = \{A \setminus C | A \in S_C\}$ and $V = \{B \setminus D | B \in T_D\}$. Note that U is a set of k-element sets where k = m - |C| < m and V is a set of ℓ -element sets where $\ell = n - |D| < n$. Note that for $A \in S_C$ and $B \in T_D$, if we let $X = A \setminus C \in U$ and $Y = B \setminus D \in V$ then we have $X \cap Y = (A \setminus C) \cap (B \setminus D) = A \cap B \neq \emptyset$. By the induction hypothesis, we can choose a finite set of integers $F_{C,D}$ so that $X \cap Y \cap F_{C,D} \neq \emptyset$ for all $X \in U$ and $Y \in V$. Then for all $A \in S_C$ and $B \in T_D$ we have $A \cap B \cap F_{C,D} = X \cap Y \cap F_{C,D} \neq \emptyset$.

6: Let $f: \mathbf{R} \to \mathbf{R}$ be continuous with $f(x) \ge 0$ for all $x \in \mathbf{R}$ and suppose $\int_{-\infty}^{\infty} f(x) dx = 1$. For r > 0 and $n \in \mathbf{Z}^+$, let $B_n(r) = \{x \in \mathbf{R}^n | |x| \le r\}$ and let

$$I_n(r) = \int_{B_n(r)} f(x_1) f(x_2) \cdots f(x_n) \ dx_1 \ dx_2 \cdots dx_n.$$

Show that for all r > 0 we have $\lim_{n \to \infty} I_n(r) = 0$.

Solution: Let r > 0. Let m be the maximum value of f(x) for $|x| \le r$. Let $V_n(r)$ be the n-volume of $B_n(r)$. Then for all $x = (x_1, x_2, \dots, x_n) \in B_n(r)$, we have $|x_i| \le r$ for all indices i so that $f(x_i) \le m$ for all i and so

$$I_n(r) = \int_{B_n(r)} f(x_1) f(x_2) \cdots f(x_n) \ dx_1 \ dx_2 \cdots dx_n \le \int_{B_n(r)} m^n \ dx_1 \ dx_2 \cdots dx_n = m^n V_n(r).$$

Since $r B_n(1) = B_n(r)$ we have $V_n(r) = r^n V_n(1)$. Thus $I_n(r) \leq m^n V_n(r) = (mr)^n V_n(1)$. Note that

$$V_{n+1}(1) = \int_{B_{n+1}(1)} dx_1 dx_2 \cdots dx_{n+1} = \int_{t=-1}^1 \int_{B_n(\sqrt{1-t^2})} dx_1 dx_2 \cdots dx_n$$
$$= \int_{t=-1}^1 V_n(\sqrt{1-t^2}) dt = \int_{t=-1}^1 (1-t^2)^{n/2} V_n(1) dt = 2V_n(1) \int_0^1 (1-t^2)^{n/2} dt.$$

For all ϵ with $0 < \epsilon \le 1$ we have

$$\frac{(mr)^{n+1}V_{n+1}(1)}{(mr)^{n}V_{n}(1)} = 2mr \int_{0}^{1} (1-t^{2})^{n/2} dt = 2mr \left(\int_{0}^{\epsilon} (1-t^{2})^{n/2} dt + \int_{\epsilon}^{1} (1-t^{2})^{n/2} dt \right)$$

$$\leq 2mr \left(\int_{0}^{\epsilon} 1 dt + \int_{\epsilon}^{1} (1-\epsilon^{2})^{n/2} dt \right) = 2mr \left(\epsilon + (1-\epsilon)(1-\epsilon^{2})^{n/2} \right)$$

$$\to 2mr\epsilon \text{ as } n \to \infty.$$

Since ϵ can be arbitrarily small, it follows that $\lim_{n\to\infty}\frac{(mr)^{n+1}V_{n+1}(1)}{(mr)^nV_n(1)}=0$. By the Ratio Test, $\sum\limits_{n=1}^{\infty}(mr)^nV_n(1)$ converges, and so $\lim\limits_{n\to\infty}(mr)^nV_n(1)=0$. Since $0\leq I_n(r)\leq (mr)^nV_n(1)$, it follows that $\lim\limits_{n\to\infty}I_n(r)=0$ by the Squeeze Theorem.

We remark that we did not use the assumption that $\int_{-\infty}^{\infty} f(x) dx = 1$.