Solutions to the Special K Problems, 2013

1: Let a, n and k be positive integers. Suppose $m \ge 3$ and gcd(a, m) = 1. Show that $a^k + (m - a)^k \equiv 0 \mod m^2$ if and only if m is odd and $k \equiv m \mod 2m$.

Solution: In order to have $a^k + (m-a)^k \equiv 0 \mod m^2$, we must have $a^k + (m-a)^k \equiv 0 \mod m$. Working modulo m we have

$$a^k + (m-a)^k \equiv 0 \iff a^k + (-a)^k \equiv 0 \iff a^k (1 + (-1)^k) \equiv 0$$

 $\iff 1 + (-1)^k \equiv 0 \iff (-1)^k \equiv -1 \mod m$

where, at one step in the above calculation, we divided by a^k which we can do since gcd(a, m) = 1. Since $m \ge 3$, in order to have $(-1)^k \equiv -1 \mod m$, we see that k must be odd. When k is odd, working modulo m^2 we have

$$a^{k} + (m-a)^{k} \equiv 0 \iff a^{k} + \left(m^{k} - km^{k-1}a + \dots + kma^{k-1} - a^{k}\right) \equiv 0$$
$$\iff a^{k} + kma^{k-1} - a^{k} \equiv 0 \iff kma^{k-1} \equiv 0 \iff km \equiv 0 \mod m^{2}.$$

Note that $km \equiv 0 \mod m^2 \iff k \equiv 0 \mod m$ and so we have

 $a^k + (m-a)^k \equiv 0 \mod m^2 \iff k \text{ is odd with } k \equiv 0 \mod m \iff m \text{ is odd and } k \equiv m \mod 2m.$

2: Find the number of positive integers k such that $k^2 + 2013$ is a square.

Solution: For $k, l \in \mathbf{Z}^+$ we have

$$k^2 + 2013 = l^2 \iff l^2 - k^2 = 2013 \iff (l - k)(l + k) = 2013.$$

Given $k,l \in \mathbf{Z}^+$ with k < l and (l-k)(l+k) = 2013, let a = l-k and b = l+k to obtain $a,b \in \mathbf{Z}^+$ with a < b and ab = 2013. Conversely, given $a,b \in \mathbf{Z}^+$ with a < b and ab = 2013, note that a and b are both odd (since 2013 is odd) and let $k = \frac{b+a}{2}$ and $l = \frac{b-a}{2}$ to obtain $k,l \in \mathbf{Z}^+$ with k < l and (l-k)(l+k) = 2013. Thus the number of pairs $k,l \in \mathbf{Z}^+$ with k < l and (l-k)(l+k) = 2013 is equal to the number of pairs $a,b \in \mathbf{Z}^+$ with a < b and ab = 2013. Since 2013 factors into primes as $2013 = 3 \cdot 11 \cdot 61$, it has eight positive divisors, namely 1,3,11,33,61,183,671,2013. Thus we have four possible pairs $a,b \in \mathbf{Z}^+$, namely (a,b) = (1,2013), (3,671), (11,183), (33,61), and hence four possible pairs $k,l \in \mathbf{Z}^+$, namely (k,l) = (1006,1007), (334,337), (86,97), (14,47). Thus there are exactly 4 positive integers k for which $k^2 + 2013$ is a perfect square, namely k = 1006,334,86,14.

3: For each positive integer n, let a_n be the first digit in the decimal representation of 2^n , let b_n be the number of indices $k \leq n$ for which $a_k = 1$, and let c_n be the number of indices $k \leq n$ for which $a_k = 2$. Show that there exists a positive integer N such that for all $n \geq N$ we have $b_n > c_n$.

Solution: Note that the sequences $\{b_n\}$ and $\{c_n\}$ are increasing with

$$b_n = \begin{cases} b_{n-1} & \text{if } a_n \neq 1 \\ b_{n-1} + 1 & \text{if } a_n = 1 \end{cases} \quad \text{and} \quad c_n = \begin{cases} c_{n-1} & \text{if } a_n \neq 2 \\ c_{n-1} + 1 & \text{if } a_n = 2. \end{cases}$$

We list some powers of 2 and find a few values of b_n and c_n .

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2^n	2	4	8	16	32	64	128	256	512	1024	2048	4096	8192	16384	32768
b_n	0	0	0	1	1	1	2	2	2	3	3	3	3	4	4
c_n	1	1	1	1	1	1	1	2	2	2	3	3	3	3	3

We claim that $b_n > c_n$ for all $n \ge 14$. From the above table, we see that $b_{14} > c_{14}$ and $b_{15} > c_{15}$. Let $n \ge 16$ and suppose, inductively, that $b_{n-1} > c_{n-1}$ and $b_{n-2} > c_{n-2}$. We must show that $b_n > c_n$. If $a_n \ne 2$ so that $c_n = c_{n-1}$, then we have $b_n \ge b_{n-1} > c_{n-1} = c_n$. Suppose that $a_n = 2$ so that $c_n = c_{n-1} + 1$. Then, since 2^n begins with the digit 2, for some $k \in \mathbb{N}$ we have $2 \cdot 10^k \le 2^n < 3 \cdot 10^k$. Dividing by 2 gives $1 \cdot 10^k \le 2^{n-1} < 1.5 \cdot 10^k$ which implies that 2^{n-1} begins with the digit 1 so that $a_{n-1} = 1$. Since $a_n = 2$ and $a_{n-1} = 1$ we have $b_n = b_{n-1} = b_{n-2} + 1$ and $c_n = c_{n-1} + 1 = c_{n-2} + 1$. Thus $b_n = b_{n-2} + 1 > c_{n-2} + 1 = c_n$.

4: Let $\{a_n\}_{n\geq 1}$ be a sequence of positive real numbers such that $a_n\leq \frac{a_{n-1}+a_{n-2}}{2}$ for all $n\geq 3$. Show that $\{a_n\}$ converges.

Solution: Let $b_n = \max\{a_n, a_{n-1}\}$ for $n \geq 2$. We claim that $\{b_n\}_{n\geq 2}$ is decreasing. If $a_{n-1} \leq a_n$ so that $b_n = a_n$, then we have $a_{n+1} \leq \frac{a_n + a_{n-1}}{2} \leq \frac{a_n + a_n}{2} = a_n$ so that $b_{n+1} = \max\{a_{n+1}, a_n\} = a_n$, and in this case $b_{n+1} = a_n = b_n$. If $a_{n-1} \geq a_n$ so that $b_n = a_{n-1}$, then we have $a_{n+1} \leq \frac{a_n + a_{n-1}}{2} \leq \frac{a_{n-1} + a_{n-1}}{2} = a_{n-1}$ so that $b_{n+1} = \max\{a_{n+1}, a_n\} \leq a_{n-1}$, and in this case $b_{n+1} \leq a_{n-1} = b_n$. In either case, we have $b_{n+1} \leq b_n$ and so $\{b_n\}$ is decreasing, as claimed. Also note that $\{b_n\}$ is bounded below by 0 (since we have $a_n \geq 0$ and $a_{n-1} \geq 0$ so that $b_n = \max\{a_n, a_{n-1}\} \geq 0$). Since $\{b_n\}$ is decreasing and bounded below, it converges. Let $l = \lim_{n \to \infty} b_n$. We claim that $\{a_n\}$ converges with $\lim_{n \to \infty} a_n = l$. Let $\epsilon > 0$. Choose $N \in \mathbb{Z}^+$ so that for all $n \in \mathbb{Z}^+$, if $n \geq N$ then $b_n < l + \frac{1}{7}\epsilon$. Let $n \geq N$. We shall show that $|a_n - l| < \epsilon$. Since $b_n = \max\{a_n, a_{n-1}\}$ we have $a_n \leq b_n < l + \frac{1}{7}\epsilon < l + \epsilon$. It remains to show that $a_n > l - \epsilon$. Suppose, for a contradiction, that $a_n \leq l - \epsilon$. Since $a_n \leq l - \epsilon$ and $a_{n+1} \leq b_{n+1} < l + \frac{1}{7}\epsilon$, we have $a_{n+2} \leq \frac{a_{n+1} + a_n}{2} < \frac{l + \frac{7}{7}\epsilon + l + l - \epsilon}{2} = l - \frac{3}{7}\epsilon$. Since $a_{n+1} < l + \frac{1}{7}\epsilon$ and $a_{n+2} < l - \frac{3}{7}\epsilon$ we have $a_{n+3} \leq \frac{a_{n+2} + a_{n+1}}{2} < \frac{l - \frac{3}{7}\epsilon + l + l - \frac{1}{7}\epsilon}{2} = l - \frac{1}{7}\epsilon$. Since $a_{n+1} < l - \frac{1}{7}\epsilon$ we have $b_{n+3} = \max\{a_{n+3}, a_{n+2}\} < l - \frac{1}{7}\epsilon$, which contradicts the choice of N.

5: Let
$$f(x) = ax^2 + bx + c$$
 with $a, b, c \in \mathbf{Z}$. Suppose that $1 < f(1) < f(f(1)) < f(f(1))$. Show that $a \ge 0$.

$$g(x) = f(x+1) - 1 = a(x+1)^2 + b(x+1) + c - 1 = ax^2 + dx + e$$

where d = 2a + b and e = a + b + c - 1. Note that g(0) = f(1) - 1, g(g(0)) = g(f(1) - 1) = f(f(1)) - 1 and g(g(g(1)))g(f(f(1)) - 1) = f(f(f(1))) - 1, and so 1 < f(1) < f(f(1)) < f(f(1)) is equivalent to

Since $g(x) = ax^2 + dx + e$, we have g(0) = e, $g(g(0)) = g(e) = ae^2 + de + e$ and $g(g(g(0))) = g(ae^2 + de + e) = a(ae^2 + de + e)^2 + d(ae + de + e) + e$. Thus

$$g(0) > 0 \implies e > 0$$

$$\begin{split} g(g(0)) > g(0) &\implies ae^2 + de + e > e \implies e(ae + d) > 0 \implies ae + d > 0 \\ g\big(g(g(0))\big) > g(g(0)) &\implies a(ae^2 + de + e)^2 + d(ae + de + e) + e > ae^2 + de + e \\ &\implies a\big(e(ae + d) + e\big)^2 + d\big(e(ae + d) + e\big) + e > ae^2 + de + e \\ &\implies ae^2(ae + d)^2 + 2ae^2(ae + d) + ae^2 + de(ae + d) + de + e > ae^2 + de + e \\ &\implies ae^2(ae + d)^2 + 2ae^2(ae + d) + de(ae + d) > 0 \implies e(ae + d)\big(ae(ae + d) + 2ae + d\big) > 0 \\ &\implies ae(ae + d) + 2ae + d > 0 \implies ae(ae + d) + ae + (ae + d) > 0 \implies a\big(e(ae + d) + 1\big) > -(ae + d) \\ &\implies a > \frac{-(ae + d)}{e\big((ae + d) + 1\big)} \implies a > -1 \quad , \text{ since } \frac{1}{e} \le 1 \text{ and } \frac{(ae + d)}{(ae + d) + 1} < 1. \end{split}$$

6: Let E be the ellipse in \mathbb{R}^2 centred at the point O. Let A and B be two points on E such that the line OA is perpendicular to the line OB. Show that the distance from O to the line through A and B does not depend on the choice of A and B.

Solution: Let E be the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a, b > 0, with centre O = (0, 0). Let A be the point $A = (r \cos \theta, r \sin \theta)$. Since OA is perpendicular to OB, the point B is of the form $B = (-s \sin \theta, s \cos \theta)$ for some $s \neq 0$. Let C be the point on the line AB nearest to O. Since $\triangle ACO$ is similar to $\triangle AOB$ we have $\frac{|OC|}{|OA|} = \frac{|OB|}{|AB|}$ and so the distance from O to the line AB is

$$d = |OC| = \frac{|OA|\,|OB|}{|AB|} = \frac{|r|\,|s|}{\sqrt{r^2 + s^2}} = \frac{1}{\sqrt{\frac{1}{r^2} + \frac{1}{s^2}}}.$$

Since A and B lie on the ellipse E we have

$$\frac{r^2 \cos^2 \theta}{a^2} + \frac{r^2 \sin^2 \theta}{b^2} = 1 \text{ and } \frac{s^2 \sin^2 \theta}{a^2} + \frac{s^2 \cos^2 \theta}{b^2} = 1$$

so that

$$\frac{1}{r^2} = \frac{\cos^2 \theta}{a^2} + \frac{\sin^2 \theta}{b^2}$$
 and $\frac{1}{s^2} = \frac{\sin^2 \theta}{a^2} + \frac{\cos^2 \theta}{b^2}$

hence

$$\frac{1}{r^2} + \frac{1}{s^2} = \frac{\cos^2\theta + \sin^2\theta}{a^2} + \frac{\sin^2\theta + \cos^2\theta}{b^2} = \frac{1}{a^2} + \frac{1}{b^2}.$$

Thus

$$d = \frac{|r|\,|s|}{\sqrt{r^2 + s^2}} = \frac{1}{\sqrt{\frac{1}{r^2} + \frac{1}{s^2}}} = \frac{1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} = \frac{ab}{\sqrt{a^2 + b^2}},$$

which does not depend on A and B.

Solutions to the Big E Problems, 2013

1: Find the number of positive integers k such that $k^2 + 10!$ is a perfect square.

Solution: For $k, l \in \mathbf{Z}^+$ we have

$$k^2 + 10! = l^2 \iff l^2 - k^2 = 10! \iff (l - k)(l + k) = 10!.$$

Given $k,l \in \mathbf{Z}^+$ with k < l and (l-k)(l+k) = 10!, let a = l-k and b = l+k to obtain $a,b \in \mathbf{Z}^+$ with a < b and ab = 10!. Note that a = b+2l so that a and b have the same parity, and since ab = 10!, which is even, it follows that a and b must both be even. Let $u = \frac{a}{2}$ and $v = \frac{b}{2}$ to get $u,v \in \mathbf{Z}^+$ with u < v and $uv = \frac{10!}{4}$. Conversely, given $u,v \in \mathbf{Z}^+$ with u < v and $uv = \frac{10!}{4}$, let a = 2u and b = 2v and then let $k = \frac{b+a}{2}$ and $l = \frac{b-a}{2}$ to obtain $k,l \in \mathbf{Z}^+$ with k < l and (l-k)(l+k) = 10!. Thus the number of positive integers k for which $k^2 + 10!$ is a square is equal to the number of pairs $k,l \in \mathbf{Z}^+$ with k < l and (l-k)(l+k) = 10!, which is equal to the number of pairs $u,v \in \mathbf{Z}^+$ with u < v and $uv = \frac{10!}{4}$, which, in turn, is equal to $\frac{1}{2}\tau(\frac{10!}{4})$ where for $n \in \mathbf{Z}^+$, $\tau(n)$ denotes the number of positive divisors of n. Since $10! = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7$ so that $\frac{10!}{4} = 2^6 \cdot 3^4 \cdot 5^2 \cdot 7^1$, we have

$$\frac{1}{2}\tau(\frac{10!}{4}) = \frac{1}{2}\cdot 7\cdot 5\cdot 3\cdot 2 = 105.$$

2: Let $f:[0,1]\to \mathbf{R}$ be continuous. Suppose that $\int_0^x f(t) dt \ge f(x) \ge 0$ for all $x\in[0,1]$. Show that f(x)=0 for all $x\in[0,1]$.

Solution: Suppose, for a contradiction that f(x) > 0 for some $x \in [0,1]$. Choose $c \in [0,1]$ so that f(c) > 0. Since f is continuous, we have f(x) > 0 in a neighbourhood of c so we can choose a point $b \in [0,1)$ with f(b) > 0. By the Extreme Value Theorem, we can choose $a \in [0,b]$ so that $f(x) \leq f(a)$ for all $x \in [0,b]$. Then we have

$$f(a) \le \int_0^a f(t) dt \le \int_0^a f(a) dt = a f(a) < f(a)$$

giving the desired contradiction.

3: For each positive integer n, let a_n be the first digit in the decimal representation of 2^n , let b_n be the number of indices $k \le n$ for which $a_k = 1$, and let c_n be the number of indices $k \le n$ for which $a_k = 2$. Show that there exists a positive integer N such that for all $n \ge N$ we have $b_n > c_n$.

Solution: Note that the sequences $\{b_n\}$ and $\{c_n\}$ are increasing with

$$b_n = \begin{cases} b_{n-1} & \text{if } a_n \neq 1 \\ b_{n-1} + 1 & \text{if } a_n = 1 \end{cases} \quad \text{and} \quad c_n = \begin{cases} c_{n-1} & \text{if } a_n \neq 2 \\ c_{n-1} + 1 & \text{if } a_n = 2. \end{cases}$$

We list some powers of 2 and find a few values of b_n and c_n .

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2^n	2	4	8	16	32	64	128	256	512	1024	2048	4096	8192	16384	32768
b_n	0	0	0	1	1	1	2	2	2	3	3	3	3	4	4
c_n	1	1	1	1	1	1	1	2	2	2	3	3	3	3	3

We claim that $b_n > c_n$ for all $n \ge 14$. From the above table, we see that $b_{14} > c_{14}$ and $b_{15} > c_{15}$. Let $n \ge 16$ and suppose, inductively, that $b_{n-1} > c_{n-1}$ and $b_{n-2} > c_{n-2}$. We must show that $b_n > c_n$. If $a_n \ne 2$ so that $c_n = c_{n-1}$, then we have $b_n \ge b_{n-1} > c_{n-1} = c_n$. Suppose that $a_n = 2$ so that $c_n = c_{n-1} + 1$. Then, since 2^n begins with the digit 2, for some $k \in \mathbb{N}$ we have $2 \cdot 10^k \le 2^n < 3 \cdot 10^k$. Dividing by 2 gives $1 \cdot 10^k \le 2^{n-1} < 1.5 \cdot 10^k$ which implies that 2^{n-1} begins with the digit 1 so that $a_{n-1} = 1$. Since $a_n = 2$ and $a_{n-1} = 1$ we have $b_n = b_{n-1} = b_{n-2} + 1$ and $c_n = c_{n-1} + 1 = c_{n-2} + 1$. Thus $b_n = b_{n-2} + 1 > c_{n-2} + 1 = c_n$.

4: Let p be an odd prime. Show that $\binom{2p}{p} \equiv 2 \mod p^2$.

Solution: We have

$$\binom{2p}{p} = \frac{(2p)!}{p! \cdot p!} = \frac{2p^2 \cdot \prod_{k=1}^{p-1} (p-k) \cdot \prod_{k=1}^{p-1} (p+k)}{p^2 \cdot (p-1)!^2} = 2 \cdot \frac{\prod_{k=1}^{p-1} (p^2 - k^2)}{(p-1)!^2}$$

and so modulo p^2 we have

$$\binom{2p}{p} \equiv 2 \cdot \frac{\prod\limits_{k=1}^{p-1} (-k^2)}{(p-1)!^2} \equiv 2 \cdot \frac{(-1)^{p-1} (p-1)!^2}{(p-1)!^2} \equiv 2 \mod p^2.$$

5: Let V be a vector space over \mathbf{R} . Let V^* be the space of linear maps $g:V\to\mathbf{R}$. Let F be a finite subset of V^* . Let $U=\left\{x\in V\big|f(x)=0\text{ for all }f\in F\right\}$. Show that for all $g\in V^*$, if g(x)=0 for all $x\in U$ then $g\in\mathrm{Span}(F)$.

Solution: If $F = \emptyset$ or $F = \{0\}$ then we have U = V, and so if g(x) = 0 for all $x \in U$ then $g = 0 \in \operatorname{Span} F$. Suppose that $F \neq \emptyset$ and $F \neq \{0\}$. Choose a maximal linearly independent set $\{f_1, f_2, \dots, f_n\} \subseteq F$ so that $\{f_1, f_2, \dots, f_n\}$ is a basis for $\operatorname{Span} F$. Note that $U = \{x \in V | f_1(x) = f_2(x) = \dots = f_n(x)\}$ because for $x \in V$, if $f_1(x) = f_2(x) = \dots = f_n(x) = 0$ then for any $f \in F$ we can write $f = \sum_{i=1}^n t_i f_i$ for some $t_i \in \mathbf{R}$ and

then we have $f(x) = \sum_{i=1}^{n} t_i f_i(x) = 0$.

We claim that there exist vectors $v_1, v_2, \dots, v_n \in V$ for which $f_i(v_j) = \delta_{i,j}$ for all indices i and j. Define $\phi: V \to \mathbf{R}^n$ by $\phi(x) = (f_1(x), f_2(x), \dots, f_n(x))^T$. Note that for $t \in \mathbf{R}^n$, we have

$$t \in \phi(V)^{\perp} \iff \phi(x) \cdot t = 0 \text{ for all } x \in V \iff \sum_{i=1}^{n} t_i f_i(x) = 0 \text{ for all } x \in V \iff \sum_{i=1}^{n} t_i f_i = 0 \iff t = 0.$$

Thus we have $\phi(V)^{\perp} = \{0\}$ and so $\phi(V) = \mathbf{R}^n$, hence ϕ is surjective. Since ϕ is surjective, for each index $j = 1, 2, \dots, n$ we can choose $v_j \in V$ so that $\phi(v_j) = e_j$ where e_j is the j^{th} standard basis vector in \mathbf{R}^n . Since $e_j = \phi(v_j) = \left(f_1(v_j), f_2(v_j), \dots, f_n(v_j)\right)^T$, we see that $f_i(v_j) = \delta_{i,j}$ for all indices i and j, as claimed.

Let $g \in V^*$ with g(x) = 0 for all $x \in U$. We claim that $g = \sum_{i=1}^n g(v_i) f_i$ so that $g \in \operatorname{Span} F$. Let $x \in V$.

Let $v = \sum_{i=1}^n f_i(x)v_i$ and let u = x - v. Notice that $u \in U$ because for all indices j we have

$$f_j(u) = f_j(x - v) = f_j\left(x - \sum_{i=1}^n f_i(x)v_i\right) = f_j(x) - \sum_{i=1}^n f_i(x)f_j(v_i) = f_j(x) - \sum_{i=1}^n f_i(x)\delta_{i,j} = f_j(x) - f_j(x) = 0.$$

Since $u \in U$ we have g(u) = 0 and so

$$g(x) = g(u+v) = g(u) + g(v) = g(v) = g(\sum_{i=1}^{n} f_i(x)v_i) = \sum_{i=1}^{n} f_i(x)g(v_i) = (\sum_{i=1}^{n} g(v_i)f_i)(x).$$

Since $g(x) = (\sum_{i=1}^{n} g(v_i)f_i)(x)$ for all $x \in V$ it follows that $g = \sum_{i=1}^{n} g(v_i)f_i$, as claimed.

6: Let a, b and c be positive real numbers. Let E be the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ in \mathbf{R}^3 . Let $u, v, w \in E$ be such that the set $\{u, v, w\}$ is orthogonal. Show that the distance from the origin to the plane through u, v and w does not depend on the choice of u, v and w.

Solution: We generalize to \mathbf{R}^n . Let $a_1, a_2, \dots, a_n > 0$ and let E be the ellipsoid in \mathbf{R}^n given by $\sum_{i=1}^n \frac{{x_i}^2}{{a_i}^2} = 1$. Let $\mathcal{U} = \{u_1, u_2, \dots, u_n\}$ be an orthogonal set with each $u_i \in E$. Let P be the hyperplane through all of the points u_i . We have $P = u_1 + U$ where $U = \operatorname{Span}\{u_2 - u_1, u_3 - u_1, \dots, u_n - u_1\}$, that is

$$P = \left\{ u_1 + \sum_{k=2}^{n} t_k (u_k - u_1) \middle| t_k \in \mathbf{R} \right\} = \left\{ \sum_{i=1}^{n} t_i u_i \middle| t_i \in \mathbf{R} , \sum_{i=1}^{n} t_i = 1 \right\}.$$

Let x be the point in P nearest to the origin. Note that x is the (unique) point in $P \cap U^{\perp}$. Since $x \in U^{\perp}$ we have $x \cdot (u_k - u_1) = 0$ so that $x \cdot u_k = x \cdot u_1$ for all $k \geq 2$. Let $c = x \cdot u_1$ so that we have $x \cdot u_k = c$ for all $k \geq 1$. Since $x \in P$, we can write $x = \sum_{i=1}^n t_i u_i$ with $\sum_{i=1}^n t_i = 1$. Since \mathcal{U} is orthogonal, the coefficients are given by $t_i = \frac{x \cdot u_i}{|u_i|^2} = \frac{c}{|u_i|^2}$. Since $\sum_{i=1}^n t_i = 1$, this gives $c = \left(\sum_{i=1}^n \frac{1}{|u_i|^2}\right)^{-1}$. Thus the distance from the origin to P is

$$|x| = \left| \sum_{i=1}^{n} t_i u_i \right| = \sqrt{\sum_{i=1}^{n} t_i^2 |u_i|^2} = \sqrt{\sum_{i=1}^{n} \frac{c^2}{|u_i|^2}} = \sqrt{c^2 \cdot \frac{1}{c}} = \sqrt{c} = \left(\sum_{i=1}^{n} \frac{1}{|u_i|^2} \right)^{-1/2}.$$

Let A be the matrix with columns $\frac{u_i}{|u_i|}$, that is $A = \left(\frac{u_1}{|u|_1}, \frac{u_2}{|u_2|}, \cdots, \frac{u_n}{|u_n|}\right) \in M_n(\mathbf{R})$ and let D be the diagonal matrix $D = \operatorname{diag}\left(\frac{1}{a_1^2}, \frac{1}{a_2^2}, \cdots, \frac{1}{a_n^2}\right)$. For each index k, since $u_k \in E$ we have $u_k^T D u_k = \sum_{i=1}^n \frac{u_{ki}^2}{a_i^2} = 1$ and so the diagonal entries of the matrix $A^T D A$ are given by

$$(A^T D A)_{k,k} = \left(\frac{u_k}{|u_k|}\right)^T D \left(\frac{u_k}{|u_k|}\right) = \frac{1}{|u_k|^2}.$$

Since the columns of A form an orthonormal basis for \mathbb{R}^n we have $A^TA = I$ and so

$$\sum_{i=1}^{n} \frac{1}{|u_i|^2} = \text{trace}(A^T D A) = \text{trace}(D) = \sum_{i=1}^{n} \frac{1}{a_i^2}.$$

Thus the distance from the origin to P is

$$|x| = \left(\sum_{i=1}^{n} \frac{1}{|u_i|^2}\right)^{-1/2} = \left(\sum_{i=1}^{n} \frac{1}{a_i^2}\right)^{-1/2}$$

which is independent of the choice of u_1, u_2, \dots, u_n .