Solutions to the Special K Problems, 2012

1: Let $f(x) = x^4 + 2x^3$. Find the equation of a line which is tangent to the curve y = f(x) at two distinct points.

Solution: We have $f'(x) = 4x^3 + 6x^2$. The tangent line to y = f(x) at x = a is given by y = l(x) where

$$l(x) = f(x) + f'(a)(x - a) = (a^4 + 2a^3) + (4a^3 + 6a^2)(x - a) = (4a^3 + 6a^2)x - (3a^4 + 4a^3).$$

Note that the function g(x) = f(x) - l(x) has a double root at x = a, indeed

$$g(x) = f(x) - l(x) = x^4 + 2x^3 - (4a^3 + 6a^2)x + (3a^4 + 4a^3)$$

= $(x - a)(x^3 + (a + 2)x^2 + (a^2 + 2a)x - (3a^3 + 4a^2))$
= $(x - a)^2(x^2 + (2a + 2)x + (3a^2 + 4a))$.

In order for y = l(x) to be tangent to the curve y = f(x) at another point (b, f(b)), we need g(x) to have another double root at x = b. Since g(x) is monic, it must be of the form $g(x) = (x - a)^2(x - b)^2$, so we must have

$$x^{2} + (2a + 2)x + (3a^{2} + 4a) = (x - b)^{2} = x^{2} - 2b + b^{2}$$

and so b = -(a+1) (1) and $b^2 = 3a^2 + 4a$ (2). Put b = -(a+1) into equation (2) to get $a^2 + 2a + 1 = 3a^2 + 4a$, that is $2a^2 + 2a - 1 = 0$. Thus $a = \frac{-2 \pm \sqrt{4+8}}{4} = \frac{-1 \pm \sqrt{3}}{2}$ and b = -(a+1). When $a = \frac{-1 + \sqrt{3}}{2}$ we have $b = \frac{-1 - \sqrt{3}}{2}$, and vice versa. Taking $a = \frac{-1 + \sqrt{3}}{2}$, we have $a^2 = \frac{2 - \sqrt{3}}{2}$, $a^3 = \frac{-5 + 3\sqrt{3}}{4}$ and $a^4 = \frac{7 - 4\sqrt{3}}{4}$ and so the equation of the required tangent line is

$$y = l(x) = \left(4a^3 + 6a^2\right)x - \left(3a^4 + 4a^3\right) = \left(\left(-5 + 3\sqrt{3}\right) + \left(6 - 3\sqrt{3}\right)\right)x - \left(\frac{21 - 12\sqrt{3}}{4} + \frac{-20 + 12\sqrt{3}}{4}\right) = x - \frac{1}{4}$$

2: Find the area of the region $R = \{(x,y) \in \mathbf{R}^2 | (x^2 + y^2)^2 \le 4x^2 \text{ and } x(x^2 + y^2) \le 2\sqrt{3}xy \}$.

Solution: When x>0 we have $(x^2+y^2)^2\leq 4x^2\iff x^2+y^2\leq 2x\iff (x-1)^2+y^2\leq 1$ and we have $x(x^2+y^2)\leq 2\sqrt{3}\,xy\iff x^2+y^2\leq \sqrt{3}\,y\iff x^2+(y-\sqrt{3})^2\leq 3$, and so the part of the region R which lies to the right of the y-axis is the region A which lies inside both the circle centered at (1,0) of radius 1 and the circle centered at $(0,\sqrt{3})$ of radius $\sqrt{3}$. When x<0, on the other hand, we have $(x^2+y^2)^2\leq 4x^2\iff x^2+y^2\leq -2x\iff (x+1)^2+y^2\leq 1$ and $x(x^2+y^2)\leq 2\sqrt{3}\,xy\iff x^2+y^2\geq 2\sqrt{3}\,y$ which lies inside the circle centred at (-1,0) of radius 1 and outside the circle centered at $(0,\sqrt{3})$ of radius $\sqrt{3}$. The area of R is the sum of the areas of A and B which, by symmetry, is equal to the areal of a unit circle, namely π .

3: Let x_n be the number of $2 \times n$ matrices with entries in $\{0,1\}$ which do not contain the 2×2 block $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Find $\lim_{n \to \infty} \frac{x_{n+1}}{x_n}$.

Solution: Let a_n , b_n , c_n and d_n be the number of allowable $2 \times n$ matrices which end with the column $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Note that $a_1 = b_1 = c_1 = d_1 = 1$. Each of the three columns $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ can be appended to any allowable $2 \times n$ matrix to get an allowable $2 \times (n+1)$ matrix, so we have

$$a_{n+1} = c_{n+1} = d_{n+1} = a_n + b_n + c_n + d_n.$$

It follows that $a_n = c_n = d_n$ for all $n \ge 1$, and we can write the above recursion formula as

$$a_{n+1} = 3a_n + b_n.$$

The column $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ can be appended to any allowable $2 \times n$ matrix which does not end with $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, so we have

$$b_{n+1} = a_n + b_n + d_n = 2a_n + b_n.$$

From the formula $a_{n+1}=3a_n+b_n$ we get $b_n=a_{n+1}-3a_n$ (hence also $b_{n+1}=a_{n+2}-3a_{n+1}$). Put this into the formula $b_{n+1}=2a_n+b_n$ to get $a_{n+2}-3a_{n+1}=2a_n+a_{n+1}-3a_n$ which we can also write as

$$a_{n+2} = 4a_{n+1} - a_n$$
.

Note that $x_n = a_n + b_n + c_n + d_n = 3a_n + b_n = a_{n+1}$, so that $x_1 = 4$, $x_2 = a_3 = 15$ and for $n \ge 2$ we have

$$x_{n+1} = 4x_n - x_{n-1} \, .$$

Dividing by x_n gives

$$\frac{x_{n+1}}{x_n} = 4 - \frac{x_{n-1}}{x_n} \,.$$

The above formula shows that $\left\{\frac{x_{n+1}}{x_n}\right\}$ is decreasing, and we have $x_{n+1}=a_{n+2}=3a_{n+1}+b_{n+1}\geq 3a_{n+1}=3$ x_n so that $\frac{x_{n+1}}{x_n}\geq 3$, and so the sequence $\left\{\frac{x_{n+1}}{x_n}\right\}$ must converge with $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}\geq 3$. Let $L=\lim_{x\to\infty}\frac{x_{n+1}}{x_n}$. By taking the limit on both sides of the formula $\frac{x_{n+1}}{x_n}=4-\frac{x_{n-1}}{x_n}$ we obtain $L=4-\frac{1}{L}$, that is $L^2-4L+1=0$, and so $L=\frac{4\pm\sqrt{16-4}}{2}=2\pm\sqrt{2}$. Since $L\geq 3$ we must have $L=2+\sqrt{2}$.

4: Let $k \geq 3$ be an integer. Let $n = \frac{k(k+1)}{2}$. Let $S \subseteq \mathbf{Z}_n$ with |S| = k. Show that $S + S \neq \mathbf{Z}_n$.

Solution: Say $S = \{a_1, a_2, \dots, a_k\}$. Then each element of S + S is of the form $a_j + a_k$ for some 1 or 2-element subset $\{a_j, a_k\} \subset S$ (where we allow the possibility that $a_j = a_k$). There are $\frac{k(k+1)}{2}$ such subsets, and so to show that $S + S \neq \mathbf{Z}_n$ it suffices to find two distinct sets $\{a_i, a_l\} \neq \{a_j, a_k\}$ with $a_i + a_l = a_j + a_k$.

There are k(k-1) ordered pairs (a_i, a_j) with $a_i \neq a_j$. For such pairs, there are n-1 possible values for the difference $a_i - a_j$ in \mathbb{Z}_n (since the difference cannot be zero). For $k \geq 3$ we have

$$k(k-1) = \frac{k(k+1)}{2} + \frac{k(k-3)}{2} \ge \frac{k(k+1)}{2} = n > n-1$$

so by the Pigeonhole principle, we can choose two order pairs $(a_i, a_j) \neq (a_k, a_l)$ with $a_i \neq a_j$ and $a_k \neq a_l$ such that $a_i - a_j = a_k - a_l$. Note that $a_i + a_l = a_j + a_k$ and note that $\{a_i, a_l\} \neq \{a_j, a_k\}$ (indeed, if we had $\{a_i, a_l\} = \{a_j, a_k\}$ then since $a_i \neq a_j$ we would need $a_i = a_k$, and since $a_l \neq a_k$ we would need $a_l = a_j$, but then we would have $(a_i, a_j) = (a_k, a_l)$).

5: Let $f: \mathbf{R} \to \mathbf{R}$. Suppose that $\lim_{x \to 0} f(x) = f(0) = 0$ and $\lim_{x \to 0} \frac{f(2x) - f(x)}{x} = 0$. Show that f is differentiable at f with f'(0) = 0.

Solution: Let $\epsilon > 0$. Choose $\delta > 0$ so that $0 < |x| < \delta \Longrightarrow \left| \frac{f(2x) - f(x)}{x} \right| < \frac{\epsilon}{2}$. Let $x \in \mathbf{R}$ with $0 < |x| < \delta$.

Note that for $k \in \mathbf{Z}^+$ we have $0 < \left| \frac{x}{2^k} \right| < \delta$ and so $\left| \frac{f\left(\frac{x}{2^{k-1}}\right) - f\left(\frac{x}{2^k}\right)}{\frac{x}{2^k}} \right| < \frac{\epsilon}{2}$, hence $\left| \frac{f\left(\frac{x}{2^{k-1}}\right) - f\left(\frac{x}{2^k}\right)}{x} \right| < \frac{\epsilon}{2^{k+1}}$.

Thus for all $n \in \mathbf{Z}^+$ we have

$$\left| \frac{f(x) - f(0)}{x - 0} \right| = \left| \frac{f(x)}{x} \right| = \left| \frac{f(x) - f\left(\frac{x}{2}\right)}{x} + \frac{f\left(\frac{x}{2}\right) - f\left(\frac{x}{4}\right)}{x} + \dots + \frac{f\left(\frac{x}{2^{n-1}}\right) - f\left(\frac{x}{2^n}\right)}{x} + \frac{f\left(\frac{x}{2^n}\right)}{x} \right|$$

$$\leq \left| \frac{f(x) - f\left(\frac{x}{2}\right)}{x} \right| + \left| \frac{f\left(\frac{x}{2}\right) - f\left(\frac{x}{4}\right)}{x} \right| + \dots + \left| \frac{f\left(\frac{x}{2^{n-1}}\right) - f\left(\frac{x}{2^n}\right)}{x} \right| + \left| \frac{f\left(\frac{x}{2^n}\right)}{x} \right|$$

$$\leq \frac{\epsilon}{4} + \frac{\epsilon}{8} + \dots + \frac{\epsilon}{2^{n+1}} + \left| \frac{f\left(\frac{x}{2^n}\right)}{x} \right| < \frac{\epsilon}{2} + \frac{\left| f\left(\frac{x}{2^n}\right) \right|}{|x|}.$$

In particular, choosing n large enough so that $\left|f\left(\frac{x}{2^n}\right)\right| < \frac{\epsilon|x|}{2}$ (which we can do since $\lim_{x\to 0} f(x) = 0$) we have

$$\left| \frac{f(x) - f(0)}{x - 0} \right| < \epsilon.$$

6: Let \mathbf{Z}^+ be the set of positive integers. Show that there exists a bijection $f: \mathbf{Z}^+ \to \mathbf{Z}^+$ with the property that $\prod_{k=1}^n f(k)$ is an n^{th} power for every $n \in \mathbf{Z}^+$.

Solution: We construct such a bijection. We define f(1) = 1. Having defined $f(1), f(2), \dots, f(2n-1)$, we define f(2n) and f(2n+1) as follows. First we define f(2n+1) to be the smallest positive integer with $f(2n+1) \notin \{f(1), f(2), \dots, f(2n-1)\}$, and then we define

$$f(2n) = (f(1)f(2)\cdots f(2n-1))^{(2n)(2n+1)-1}f(2n+1)^{2n}.$$

Solutions to the Big E Problems, 2012

1: Find the volume of the solid $S = \{(x, y, z) \in \mathbf{R}^3 | (x^2 + y^2 + z^2)^2 \le 4x^2 \text{ and } x(x^2 + y^2) \le xz^2 \}$.

Solution: When x>0 we have $(x^2+y^2+z^2)^2 \le 4x^2 \iff x^2+y^2+z^2 \le 2x \iff (x-1)^2+y^2+z^2 \le 1$ and we have $x(x^2+y^2) \le xz^2 \iff x^2+y^2 \le z^2$, and so the part of the solid S which lies to the right of the yz-plane is the region A which lies inside both the sphere centered at (1,0,0) of radius 1 and the double cone $x^2+y^2=z^2$. When x<0, on the other hand, we have $(x^2+y^2+z^2)^2 \le 4x^2 \iff x^2+y^2+z^2 \le -2x \iff (x+1)^2+y^2+z^2 \le 1$ and $x(x^2+y^2) \le xz^2 \iff x^2+y^2 \ge z^2$ and so the part of the solid S which lies to the left of the yz-plane is the region S which lies inside the sphere centred at S0 of radius 1 and outside the double cone S1. The volume of S2 is the sum of the volumes of S3 and S4 which, by symmetry, is equal to the volume of a unit sphere, namely S4.

2: Find the number of $3 \times n$ matrices with entries in $\{0,1\}$ which do not contain the 2×2 block $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Solution: For $k = 0, 1, 2, \dots, 7$, let $a_{k,n}$ be the number of allowable $3 \times n$ matrices ending with the column which corresponds to the binary representation of k. Note that $a_{k,1} = 1$ for all k. Since each of the columns $(0,0,0)^T,(1,0,0)^T,(1,1,0)^T,(1,1,1)^T$ can be appended to any allowable $3 \times n$ matrix to obtain an allowable $3 \times (n+1)$ matrix, we have

$$a_{0,n+1} = a_{4,n+1} = a_{6,n+1} = a_{7,n+1} = a_{0,n} + a_{1,n} + a_{2,n} + \dots + a_{7,n}$$
.

Since each of the columns $(0,0,1)^T$, $(1,0,1)^T$ can be appended to any allowable $3 \times n$ matrix with any final column other than $(0,1,0)^T$ or $(1,1,0)^T$ we have

$$a_{1,n+1} = a_{5,n+1} = a_{0,n} + a_{1,n} + a_{3,n} + a_{4,n} + a_{5,n} + a_{7,n}$$
.

Since each of the columns $(0,1,0)^T$, $(0,1,1)^T$ can be appended to any allowable $3 \times n$ matrix with any final column other than $(1,0,0)^T$, $(1,0,1)^T$ we have

$$a_{2,n+1} = a_{3,n+1} = a_{0,n} + a_{1,n} + a_{2,n} + a_{3,n} + a_{6,n} + a_{7n}$$
.

We see that $a_{0,n} = a_{4,n} = a_{6,n} = a_{7,n}$ for all n, and $a_{1,n} = a_{5,n}$ for all n, and $a_{2,n} = a_{3,n}$ for all n. Say $a_n = a_{0,n}$, $b_n = a_{1,n}$ and $c_n = a_{2,n}$. Then we have $a_1 = b_1 = c_1$ and the above recursion formulas simplify to

$$a_{n+1} = 4a_n + 2b_n + 2c_n$$

$$b_{n+1} = 3a_n + 2b_n + c_n$$

$$c_{n+1} = 3a_n + b_n + 2c_n$$

By the symmetry between b and c in these equations we see that $b_n = c_n$ for all n, so the formulas further simplify to

$$\begin{split} a_{n+1} &= 4a_n + 4b_n \\ b_{n+1} &= 3a_n + 3b_n = \frac{3}{4} \, a_{n+1} \, . \end{split}$$

Thus we have $a_1 = 1$, $b_1 = 1$, $a_2 = 8$, $b_2 = 7$, and for $n \ge 1$ we have $b_n = \frac{3}{4} a_n$ so that

$$a_{n+1} = 4a_n + 4b_n = 4a_n + 3a_n = 7a_n.$$

Thus for $n \ge 2$ we have $a_n = 8 \cdot 7^{n-2}$ and $b_n = 7 \cdot 7^{n-2}$. For $n \ge 1$, the total number of allowable $3 \times n$ matrixes is equal to

$$4a_n + 4b_n = a_{n+1} = 8 \cdot 7^{n-1}.$$

3: Let $k \geq 3$ be an integer. Let $n = \frac{k(k+1)}{2}$. Let $S \subseteq \mathbf{Z}_n$ with |S| = k. Show that $S + S \neq \mathbf{Z}_n$.

Solution: Say $S = \{a_1, a_2, \dots, a_k\}$. Then each element of S + S is of the form $a_j + a_k$ for some 1 or 2-element subset $\{a_j, a_k\} \subset S$ (where we allow the possibility that $a_j = a_k$). There are $\frac{k(k+1)}{2}$ such subsets, and so to show that $S + S \neq \mathbf{Z}_n$ it suffices to find two distinct sets $\{a_i, a_l\} \neq \{a_i, a_k\}$ with $a_i + a_l = a_j + a_k$.

There are k(k-1) ordered pairs (a_i, a_j) with $a_i \neq a_j$. For such pairs, there are n-1 possible values for the difference $a_i - a_j$ in \mathbf{Z}_n (since the difference cannot be zero). For $k \geq 3$ we have

$$k(k-1) = \frac{k(k+1)}{2} + \frac{k(k-3)}{2} \ge \frac{k(k+1)}{2} = n > n-1$$

so by the Pigeonhole principle, we can choose two order pairs $(a_i, a_j) \neq (a_k, a_l)$ with $a_i \neq a_j$ and $a_k \neq a_l$ such that $a_i - a_j = a_k - a_l$. Note that $a_i + a_l = a_j + a_k$ and note that $\{a_i, a_l\} \neq \{a_j, a_k\}$ (indeed, if we had $\{a_i, a_l\} = \{a_j, a_k\}$ then since $a_i \neq a_j$ we would need $a_i = a_k$, and since $a_l \neq a_k$ we would need $a_l = a_j$, but then we would have $(a_i, a_j) = (a_k, a_l)$).

4: Let $f: \mathbf{R}^2 \to \mathbf{R}$. Suppose that f is continuous and that $\int_0^1 f(a+tu) dt = 0$ for every point $a \in \mathbf{R}^2$ and every vector $u \in \mathbf{R}^2$ with |u| = 1. Show that f is constant.

Solution: Let $a, u \in \mathbf{R}^2$ and with |u| = 1. For $x \in \mathbf{R}$, the substitution t = s + x gives

$$\int_{x}^{1+x} f(a+tu) \, du = \int_{0}^{1} f(a+xu+su) \, ds = 0$$

and so we have

$$\int_0^x f(a+tu) dt - \int_1^{1+x} f(a+tu) dt = \int_0^1 f(a+tu) dt - \int_x^{1+x} f(a+tu) dt = 0.$$

Differentiate both sides with respect to x using the FTC to get f(a+xu) - f(a+xu+u) = 0. In particular, taking x = 0, we obtain

$$f(a) = f(a+u).$$

To show that f is constant, we shall show that f(a) = f(0) for all $a \in \mathbb{R}^2$. Given $a \in \mathbb{R}^2$, let $k = \lfloor |a| \rfloor$, let $u = \frac{a}{|a|}$ and let b = a - ku. Then we have |b| < 1 and

$$f(a) = f(a - u) = f(a - 2u) = \dots = f(a - ku) = f(b)$$
.

Let v and w be the two points of intersection of the unit circle with the perpendicular bisector of the line segment from 0 to b so that |v| = |w| = 1 and v + w = b. Then f(0) = f(v) = f(v + w) = f(b) = f(a).

5: Let \mathbf{Z}^+ be the set of positive integers. Show that there exists a bijection $f: \mathbf{Z}^+ \to \mathbf{Z}^+$ with the property that $\prod_{k=1}^{n} f(k)$ is an n^{th} power for every $n \in \mathbf{Z}^+$.

Solution: We construct such a bijection. We define f(1) = 1. Having defined $f(1), f(2), \dots, f(2n-1)$, we define f(2n) and f(2n+1) as follows. First we define f(2n+1) to be the smallest positive integer with $f(2n+1) \notin \{f(1), f(2), \dots, f(2n-1)\}$, and then we define

$$f(2n) = (f(1)f(2)\cdots f(2n-1))^{(2n)(2n+1)-1}f(2n+1)^{2n}.$$

6: Let A be an $n \times n$ matrix. Let u be an eigenvector of A for the eigenvalue 1. Suppose that all of the entries of A and all of the entries of u are positive. Show that the eigenspace for the eigenvalue 1 is 1-dimensional.

Solution: Let v be any eigenvector for the eigenvalue 1. We must show that u=cv for some $0 \neq c \in \mathbf{R}$. Suppose that v has at least one positive entry (otherwise replace v by -v). Choose k with $v_k > 0$ to minimize $\frac{u_k}{v_k}$ (so we have $\frac{u_k}{v_k} \leq \frac{u_i}{v_i}$ whenever $v_i > 0$). We claim that $u = \frac{u_k}{v_k}v$. Consider the vector $w = u - \frac{u_k}{v_k}v$. The ith entry of w is $w_i = u_i - \frac{u_k}{v_k}v_i$. If $v_i \leq 0$ then we have $w_i \geq u_i > 0$, and if $v_i > 0$ then we have $w_i = (\frac{u_i}{v_i} - \frac{u_k}{v_k})v_i \geq 0$, so we have $w_i \geq 0$ for all i. Also note that

$$Aw = A\left(u - \frac{u_k}{v_h}\right) = Au - \frac{u_k}{v_h}Av = u - \frac{u_k}{v_h}v = w$$
.

Suppose, for a contradiction, that $w \neq 0$. Then each entry $w_i \geq 0$ and some entry $w_l > 0$. Since every entry of A is positive, it follows that every entry of Aw is positive, indeed the ith entry of Aw is

$$(Aw)_i = \sum_{i=1}^n A_{i,j} w_j \ge A_{i,l} w_l > 0.$$

Since w = Aw, every entry of w is positive. But this is not possible since $w_k = u_k - \frac{u_k}{v_k} v_k = 0$. Thus w = 0 and so we have $u = \frac{u_k}{v_k} v$, as claimed.