SPECIAL K

Saturday November 5, 2011 10:00 am - 1:00 pm

1: Find the number of sequences a_1, a_2, \dots, a_6 with each $a_i \in \{1, 2, 3, 4\}$ such that

$$a_1 < a_2$$
, $a_2 > a_3$, $a_3 < a_4$, $a_4 > a_5$, $a_5 < a_6$ and $a_6 > a_1$.

- 2: Find the number of solutions to the congruence $x^2 \equiv 40 x \mod 10^6$.
- **3:** Four spheres of radius 1 are inscribed in a regular tetrahedron so that each sphere is tangent to the other 3 spheres and to 3 of the faces of the tetrahedron. Find the length of the edges of the tetrahedron.
- **4:** Let S be a set of 4 distinct real numbers. Show that there exist $a, b \in S$ such that

$$0 < \frac{a-b}{1+ab} \le 1.$$

- **5:** Let f(z) be a polynomial with complex coefficients of degree $n \ge 1$. Show that there exist at least n+1 distinct complex numbers z with $f(z) \in \{0,1\}$.
- **6:** Let $f:[0,1] \to [0,1]$ be continuous. Let $a_0 = 0$ and for $n \ge 1$ let $a_n = f(a_{n-1})$. Suppose that $\lim_{n \to \infty} (a_n a_{n-1}) = 0$. Show that the sequence $\{a_n\}$ converges.

$\begin{array}{c} {\rm BIG~E} \\ {\rm Saturday~November~5,~2011} \\ 10:00~{\rm am~-1:00~pm} \end{array}$

- **1:** Find $\int_0^e x e^{-\lfloor \ln x \rfloor} dx$. (For $y \in \mathbf{R}$, $\lfloor y \rfloor$ denotes the largest integer n with $n \leq y$).
- 2: Four spheres of radius 1 are inscribed in a regular tetrahedron so that each sphere is tangent to the other 3 spheres and to 3 of the faces of the tetrahedron. Find the length of the edges of the tetrahedron.
- **3:** Let S be a set of 4 distinct real numbers. Show that there exist $a, b \in S$ such that

$$0 < \frac{a-b}{1+ab} \le 1.$$

- **4:** Let f(z) be a polynomial with complex coefficients of degree $n \ge 1$. Show that there exist at least n+1 distinct complex numbers z with $f(z) \in \{0,1\}$.
- **5:** Show that for every integer $n \ge 2$ there exists a finite group G with elements $a, b \in G$ such that |a| = 2, |b| = 3 and |ab| = n. (For $x \in G$, |x| denotes the order of x in G).
- **6:** Let $f:[0,1] \to [0,1]$ be continuous. Let $a_0 = 0$ and for $n \ge 1$ let $a_n = f(a_{n-1})$. Suppose that $\lim_{n \to \infty} (a_n a_{n-1}) = 0$. Show that the sequence $\{a_n\}$ converges.