SPECIAL K

Saturday November 7, 2009 9:00 am - 12:00 noon

- 1: Determine the number of ways the digits $1, 2, 3, \dots, 8$ can be arranged to form an 8-digit number which is divisible by 11.
- **2:** Find the largest integer n such that $x^8 x^2$ is a multiple of n for every integer x.
- **3:** Let $a_1 = 1$ and for $n \ge 2$ let $a_n = 2a_{n-1} + n$. Find $\lim_{n \to \infty} \frac{a_n}{2^n}$.
- **4:** Let f and g be real-valued functions defined on [0,1]. Suppose that f(0) > 0, f(1) < 0, f + g is increasing, and g is continuous on [0,1]. Show that f(x) = 0 for some $x \in [0,1]$.
- 5: Coins are placed on some of the 100 squares in a 10×10 grid. Every square is next to another square with a coin. Find the minimum possible number of coins. (We say that two squares are next to each other when they share a common edge but are not equal).
- **6:** A set S of positive integers contains exactly 20 multiples of 2, exactly 20 multiples of 3, and exactly 20 multiples of 5. Show that there is a subset of S which contains exactly 10 multiples of 2, exactly 10 multiples of 3, and exactly 10 multiples of 5.

BIG E Saturday November 7, 2009 9:00 am - 12:00 noon

- 1: Find the largest integer n such that $x^8 x^2$ is a multiple of n for every integer x.
- 2: Show that for all real numbers r and s, we have r+s=10 if and only if there exist 2×2 matrices A and B, with real entries, such that A has eigenvalues 1 and 3, B has eigenvalues 2 and 4, and A+B has eigenvalues r and s.
- 3: A circle, on the surface of a sphere of surface area 1, divides the sphere into two parts. The smaller of these parts is removed and replaced by a hemisphere. The area of the resulting surface is $\frac{9}{8}$. Find the surface area of the hemisphere.
- 4: Coins are placed on some of the 100 squares in a 10×10 grid. Every square is next to another square with a coin. Find the minimum possible number of coins. (We say that two squares are next to each other when they share a common edge but are not equal).
- **5:** Let n be a positive integer and let p_1, p_2, \dots, p_n be non-constant polynomials with integer coefficients. Show that there exists a positive integer k such that each $p_i(k)$ is composite.
- **6:** Let $a_0 = 1$ and for $n \ge 0$ let $a_{n+1} = a_n \frac{1}{2}a_n^2$. Find $\lim_{n \to \infty} n \, a_n$, if it exists.