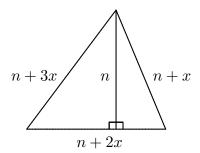
SPECIAL K

Saturday November 1, 2008 9:00 am - 12:00 noon

- 1: Find the value of $\min_{|y| \le 1} \max_{|x| \le 1} (x^2 + xy)$ and the value of $\max_{|x| \le 1} \min_{|y| \le 1} (x^2 + xy)$.
- **2:** Let $f(x) = x^3 5x + 1$ and let $g(x) = \frac{x-1}{x^2}$. Find the number of x-intercepts on the graph of y = f(g(x)).
- **3:** Determine the number of triangles which have the form shown below, where n is a positive integer and x is a real number with $0 \le x \le 1$.



- **4:** A bathroom floor is tiled by regular hexagons of the same size. Points A, B and C are vertices of hexagons in the tiling. Prove that $\angle ABC \neq 45^{\circ}$.
- 5: Show that the product $P(n) = \prod_{k=1}^{n-1} \frac{k^{2k}}{k^{n+1}}$ is an integer whenever n is prime.
- **6:** Determine whether the sequence $\left\{\frac{1}{n\sin n}\right\}$ converges.

BIG E Saturday November 1, 2008 9:00 am - 12:00 noon

- 1: Let A be a 10×10 matrix with integer entries. Suppose that 92 of those entries yield a remainder of 1 after division by 3. Show that det(A) is a multiple of 3.
- **2:** Let $f(x) = x^3 5x + 1$ and let $g(x) = \frac{x-1}{x^2}$. Find the number of x-intercepts on the graph of y = f(g(x)).
- **3:** Find all twice differentiable functions f(x) defined on $(0,\infty)$ such that f'(x) > 0 and f(f'(x)) = -f(x) for all x > 0.
- **4:** Show that the product $P(n) = \prod_{k=1}^{n-1} \frac{k^{2k}}{k^{n+1}}$ is an integer whenever n is prime.
- **5:** Determine whether the sequence $\left\{\frac{1}{n\sin n}\right\}$ converges.
- 6: Let $\pi > \alpha_1 > \alpha_2 > \alpha_3 > \cdots$ with each $\alpha_n > 0$. Form a polygonal path which winds clockwise starting with a line segment A_0A_1 of length 1, and adding edges A_nA_{n+1} all of length 1, with angle $A_{n-1}A_nA_{n+1}$ equal to α_n . Prove that there is a point contained in the interiors of all of these angles. (The *interior* of the angle $A_{n-1}A_nA_{n+1}$ is the intersection of the open half-plane bounded by the line $A_{n-1}A_n$ containing the point A_{n+1} , with the open half-plane bounded by the line A_nA_{n+1} containing the point A_{n-1}).