SPECIAL K

Saturday November 20, 1999 9:00 am - 12:00 noon

- 1: Given two circles C_1 and C_2 in the plane, find the locus of all points P for which the tangents from P to each of C_1 and C_2 have equal lengths.
- 2: How many sets of four distinct points forming the vertices of a trapezoid are there if the points are chosen from the vertices of a regular n-gon, where n is an integer ≥ 4 ?
- **3:** Let a_i and c_i be positive numbers for $i = 1, 2, \dots, n$. Prove that

$$\sqrt[n]{(a_1+c_1)(a_2+c_2)\cdots(a_n+c_n)} \ge \sqrt[n]{a_1a_2\cdots a_n} + \sqrt[n]{c_1c_2\cdots c_n}$$

State when the equality is obtained.

4: Find all the integers that can be written in the form

$$\frac{1}{n_1} + \frac{2}{n_2} + \frac{3}{n_3} + \dots + \frac{1999}{n_{1999}}$$

where $n_1, n_2, \dots, n_{1999}$ are positive integers.

5: Show that for all positive integers n there exists a positive integer d such that

$$d, 2d, 3d, \cdots, nd$$

are all perfect powers. (A positive integer m is a perfect power if it can be written in the form j^i where j and i are positive integers with $i \geq 2$.)

BIG E Saturday November 20, 1999

9:00 am - 12:00 noon

- 1: How many sets of four distinct points forming the vertices of a trapezoid are there if the points are chosen from the vertices of a regular n-gon, where n is an integer ≥ 4 ?
- **2:** Prove or disprove: Suppose P(x) and Q(x) are two polynomials in a real variable x with $|P(x)|^2 |Q(x)|^3 = 1$. Then P and Q must be constant polynomials (i.e. of degree zero).
- **3:** Prove or disprove: It is possible to write every real-valued function f(x, y, z) of three real variables as

$$f(x, y, z) = \psi(\phi(x, y), z)$$

where ψ and ϕ are appropriately chosen real-valued functions of two real variables.

4: A function $f: \mathbf{R} \to \mathbf{R}$ is said to be *convergence preserving* (CP) if for every convergent series $\sum a_n$, the series $\sum f(a_n)$ also converges.

Prove or disprove: If f is CP, then there exists a real number M and an $\epsilon > 0$ such that

$$\frac{f(x)}{x} < M$$

for all $0 < x < \epsilon$.

5: Show that for all positive integers n there exists a positive integer d such that

$$d, 2d, 3d, \cdots, nd$$

are all perfect powers. (A positive integer m is a perfect power if it can be written in the form j^i where j and i are positive integers with $i \geq 2$.)