SPECIAL K

Saturday November 2, 1991 9:00 am - 12:00 noon

1: Show that if a real valued function f verifies

$$f(x+y) = f(xy)$$

for all (strictly) positive real numbers x and y, then f is constant over $(0, \infty)$.

- **2:** A list is made of all subsets of the set $S = \{1, 2, \dots, n\}$, including S and the empty set in the list. Subsets $A_1, A_2, \dots, A_r, r > 1$, are chosen at random from the list (a subset can be chosen more than once). Find the probability that the chosen subsets are pairwise disjoint (i.e. $A_i \cap A_j = \emptyset$ for all $1 \le i < j \le r$).
- **3:** Let P be a polynomial on the real numbers. Show that

$$|P(k) - 3^k| < 1$$
 for all $k = 0, 1, 2, \dots, n$

implies that the degree of P is not less than n.

4: A set of 2n+2 2-vectors $V_1, V_2, \dots, V_{2n+2}$ is made by selecting the entries arbitrarily from the set $\{1, 2, 4, 8, \dots, 2^n\}$. Show that there exists a pair of vectors $V_i, V_j, i \neq j$, such that the 2×2 matrix

$$A_{ij} = \begin{pmatrix} V_i \\ V_j \end{pmatrix}$$

has determinant zero.

5: Let $\triangle ABC$ be any triangle and A', B', C' points on sides BC, CA and AB, respectively, such that the circles inscribed in triangles $\triangle AC'B'$, $\triangle BA'C'$, $\triangle CB'A'$ have equal radii r. Let \overline{r} be the radius of the circle inscribed in $\triangle A'B'C'$ and R that of the circle inscribed in $\triangle ABC$. Prove that

$$R = r + \overline{r}$$
.

BIG E

Saturday November 2, 1991 9:00 am - 12:00 noon

- 1: A list is made of all subsets of the set $S = \{1, 2, \dots, n\}$, including S and the empty set in the list. Subsets $A_1, A_2, \dots, A_r, r > 1$, are chosen at random from the list (a subset can be chosen more than once). Find the probability that the chosen subsets are pairwise disjoint (i.e. $A_i \cap A_j = \emptyset$ for all $1 \le i < j \le r$).
- 2: Let P be a polynomial on the real numbers. Show that

$$|P(k) - 3^k| < 1$$
 for all $k = 0, 1, 2, \dots, n$

implies that the degree of P is not less than n.

- **3:** A set K in the plane is said to be Valentine convex if for any set $\{x, y, z\}$ of points in K one of the three line segments xy, yz, zx is contained in K.
 - (a) Show that the union of any two convex sets is Valentine convex. Show that there exist three convex sets whose union is not Valentine convex.
 - (b) Give an example of a Valentine convex set which cannot be expressed as the union of two convex sets.
- **4:** A figure eight is a closed curve that intersects itself exactly once. Show that any collection of disjoint figure eights in the plane must necessarily be countable.
- 5: Let $f: \mathbf{R}^+ \to \mathbf{R}$ be twice continuously differentiable. such that
 - (a) f(0) = f'(0) = 0,
 - (b) $0 \le 3 f''(x) \le \sqrt{1 + (f'(x))^2} (\cos(f(x)) + 2)$ for all x > 0.

Prove that $0 \le f(x) \le \cosh x - 1$ for all x > 0.