Bernoulli Trial 45^2

- 1. There are 15 questions. Answer T or F only.
- 2. Put your name, your BT ID, and the question number on each answer slip.
- 3. Correct answer = 1 point; Incorrect answer = -1 point; No answer = 0 point.
- 4. At least 12 questions need to be answered to qualify for the prizes.

5. Prizes:

- First place: \$200
- Second place: \$100
- Third place: \$50
- Last place: \$200

 \mathbf{T}/\mathbf{F} : There are infinitely many positive integers d,n such that $d\mid n$ and

$$\binom{2d}{d} \nmid \binom{2n}{n}.$$

 \mathbf{T}/\mathbf{F} : There are infinitely many positive integers d, n such that $d \mid n$ and

$$\binom{2d}{d} \nmid \binom{2n}{n}.$$

T: If p is a prime between d and 2d and between 2n/3 and n, then it will divide $\binom{2d}{d}$ but not $\binom{2n}{n}$. For example, $5 \mid \binom{6}{3}$ but $5 \nmid \binom{12}{6}$. We take n = 2d. Then we need there to be a prime between 4d/3 and 2d. Such a prime exists for any $d \geq 3$.

Gian says: Take d=2 and $n=(9^k-1)/2$ so that $d\mid n$. For any $j\leq 2k-1$, the remainder $2n\%3^j=2$ and $n\%3^j=1$ so $3\nmid \binom{2n}{n}$. More generally, fix any $d\geq 2$, let p be a prime between d and 2d. Then $p\mid \binom{2d}{d}$ and is coprime to d. Take

$$n = (p^{o_{2d}(p)k} - 1)/2.$$

 \mathbf{T}/\mathbf{F} : $x^{46} + 69x + 2025$ is irreducible in $\mathbb{Z}[x]$.

 \mathbf{T}/\mathbf{F} : $x^{46} + 69x + 2025$ is irreducible in $\mathbb{Z}[x]$.

T: This smells like Eisenstein's criterion but

$$f(x) := x^{46} + 69x + 2025 \equiv x^{46} + 1 \equiv (x^2 + 1)^{23} \pmod{23}.$$

The key point here is that $23 \equiv 3 \pmod{4}$ so that $x^2 + 1$ is irreducible in $\mathbb{F}_{23}[x]$. We can write $f(x) = (x^2 + 1)^{23} + 23g(x)$ where

$$g(x) = -x^{44} - \frac{1}{23} {23 \choose 2} x^{42} \cdots - x^2 + 3x + 88.$$

Suppose f(x) = h(x)k(x) where $h, k \in \mathbb{Z}[x]$ are monic of degree at least 1. Then $\bar{h}\bar{k} = (x^2 + 1)^{23}$. Since $x^2 + 1$ is irreducible, we have $\bar{h} = (x^2 + 1)^a$ and $\bar{k} = (x^2 + 1)^b$ for some positive a, b with a + b = 23. Write $h = (x^2 + 1)^a + 23h_1(x)$ and $k = (x^2 + 1)^b + 23k_1(x)$. We see that

$$g(x) = (x^{2} + 1)^{a}k_{1}(x) + (x^{2} + 1)^{b}h_{1}(x) + 23h_{1}(x)k_{1}(x).$$

So $x^2 + 1$ divides \bar{g} in $\mathbb{F}_{23}[x]$. However, $g(x) \equiv 3x + \cdots \pmod{x^2 + 1}$. Contradiction.

Gian says: So essentially $f(x) \equiv u^n \pmod{p}$ and $f(x) \notin (p, u)^2$ where p = 23 and $u = x^2 + 1$ is irreducible mod p.

 \mathbf{T}/\mathbf{F} : There is a unique digit $d=1,\ldots,9$ such that if 2^n and 5^n start with the same digit for some $n\in\mathbb{N}$, then that digit is d.

 \mathbf{T}/\mathbf{F} : There is a unique digit $d=1,\ldots,9$ such that if 2^n and 5^n start with the same digit for some $n\in\mathbb{N}$, then that digit is d.

T: Since $2^n \cdot 5^n = 10^n$, we need their product to begin with 10. This is only possible if d = 3.

 \mathbf{T}/\mathbf{F} : For any odd prime number p,

$$\left(\frac{p-1}{2}\right)^3 \mid \sum_{o=1}^{p-1} \sum_{r=1}^{p-1} \sum_{z=1}^{p-1} \left\lfloor \frac{orz}{p} \right\rfloor.$$

 \mathbf{T}/\mathbf{F} : For any odd prime number p,

$$\left(\frac{p-1}{2}\right)^3 \mid \sum_{o=1}^{p-1} \sum_{r=1}^{p-1} \sum_{z=1}^{p-1} \left\lfloor \frac{orz}{p} \right\rfloor.$$

T: Since p is a prime, the remainder of $orz \mod p$ is never 0. We pair orz with or(p-z) to see that

$$\left\lfloor \frac{orz}{p} \right\rfloor + \left\lfloor \frac{or(p-z)}{p} \right\rfloor = \frac{orz}{p} + \frac{or(p-z)}{p} - 1.$$

Hence

$$\sum_{o=1}^{p-1} \sum_{r=1}^{p-1} \sum_{z=1}^{p-1} \left\lfloor \frac{orz}{p} \right\rfloor = \sum_{o=1}^{p-1} \sum_{r=1}^{p-1} \sum_{z=1}^{p-1} \left(\frac{orz}{p} \right) - \frac{(p-1)^3}{2}$$

$$= \frac{1}{p} \left(\sum_{n=1}^{p-1} n \right)^3 - \frac{(p-1)^3}{2}$$

$$= \frac{1}{p} \left(\frac{p(p-1)}{2} \right)^3 - \frac{(p-1)^3}{2},$$

both terms are divisible by $((p-1)/2)^3$.

$$\mathbf{T/F}$$
: $\int_{2}^{\infty} \frac{1}{x^7 - x} dx > \frac{1}{365}$.

T/F:
$$\int_{2}^{\infty} \frac{1}{x^7 - x} dx > \frac{1}{365}$$
.

F: For x > 2, we have $(x/2)^7 > (x/2)$ from which we get that

$$x^7 - x > \frac{126}{128}x^7.$$

Hence

$$\int_{2}^{\infty} \frac{1}{x^{7} - x} \, dx < \frac{64}{63} \int_{2}^{\infty} \frac{1}{x^{7}} dx = \frac{1}{663} = \frac{1}{378}.$$

In fact, we can compute this integral exactly:

$$\int_{2}^{\infty} \frac{1}{x^{7} - x} dx = \int_{2}^{\infty} \frac{x^{5}}{x^{12} - x^{6}} dx = \frac{1}{6} \int_{64}^{\infty} \frac{1}{u^{2} - u} du = \frac{1}{6} \int_{64}^{\infty} \frac{1}{u - 1} - \frac{1}{u} du = \frac{1}{6} \ln(\frac{64}{63}).$$

Let X_1, X_2, \ldots be independent and identically distributed random variables uniform on (0,1). Let

$$R_n = \sum_{k=1}^n \begin{cases} 1 & \text{if } X_k = \max\{X_1, \dots, X_k\} \\ 0 & \text{otherwise} \end{cases}$$

For any random variable Y, let E(Y) denote its expectation and $Var(Y) = E(Y^2) - E(Y)^2$ denote its variance.

 \mathbf{T}/\mathbf{F} : $\lim_{n\to\infty} \left(E(R_n) - \operatorname{Var}(R_n) \right) < \frac{\pi^2}{420/69}$.

Let X_1, X_2, \ldots be independent and identically distributed random variables uniform on (0,1). Let

$$R_n = \sum_{k=1}^n \begin{cases} 1 & \text{if } X_k = \max\{X_1, \dots, X_k\}, \\ 0 & \text{otherwise.} \end{cases}$$

$$\mathbf{T}/\mathbf{F}$$
: $\lim_{n\to\infty} \left(E(R_n) - \operatorname{Var}(R_n) \right) < \frac{\pi^2}{420/69}$.

F: Let

$$I_k = \begin{cases} 1 & \text{if } X_k = \max\{X_1, \dots, X_k\}, \\ 0 & \text{otherwise.} \end{cases}$$

Then $E(I_k^2) = E(I_k) = 1/k$ and $E(I_k I_j) = 1/(kj)$ if j < k. By linearity, we have

$$E(R_n) = \sum_{k=1}^n E(I_k) = \sum_{k=1}^n \frac{1}{k}$$

$$E(R_n^2) = \sum_{k=1}^n \sum_{j=1}^n E(I_k I_j) = \sum_{k=1}^n \sum_{j=1}^n \frac{1}{kj} + \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k^2}\right) = E(R_n)^2 + E(R_n) - \sum_{k=1}^n \frac{1}{k^2}.$$

Therefore,

$$E(R_n) - Var(R_n) = \sum_{k=1}^{n} \frac{1}{k^2}.$$

The desired limit is $\frac{\pi^2}{6}$ which is more than $\frac{\pi^2}{420/69}$ as 420/69 > 6.

 \mathbf{T}/\mathbf{F} : For any integers $n, d \geq 3$, there exists a set $S \subseteq \{1, 2, \dots, (2n)^d\}$ of size at least n^{d-2}/d that does not contain any 3-term arithmetic progression (i.e. there does not exist $a, b, c \in S$ such that a + b = 2c).

 \mathbf{T}/\mathbf{F} : For any integers $n, d \geq 3$, there exists a set $S \subseteq \{1, 2, \dots, (2n)^d\}$ of size at least n^{d-2}/d that does not contain any 3-term arithmetic progression (i.e. there does not exist $a, b, c \in S$ such that a + b = 2c).

T: Consider the set $A = [0, n-1]^d \cap \mathbb{Z}^d$ and the spheres $S_t : x_1^2 + \cdots + x_d^2 = t$ for $t = 0, \ldots, dn^2 - 1$. Every point of A lies on exactly one of these spheres. By the Pigeonhole principle, at least one of these spheres S_{t_0} contains at least $n^d/(dn^2)$ points of A. There are no arithmetic progressions among these points in \mathbb{Z}^d . Consider now the function $f: A \to \mathbb{Z}$ given by

$$f(x_1, \dots, x_d) = x_1 + x_2(2n) + x_3(2n)^2 + \dots + x_d(2n)^{d-1}$$
.

Since all the x_i are bounded by n, we see that if $\mathbf{x}, \mathbf{y}, \mathbf{z} \in A$ satisfy $\mathbf{x} + \mathbf{y} \neq \mathbf{z} + \mathbf{z}$, then $f(\mathbf{x}) + f(\mathbf{y}) \neq f(\mathbf{z}) + f(\mathbf{z})$. So $f(S_{t_0} \cap A)$ also contains no arithmetic progressions. Furthermore, for any $\mathbf{x} \in A$, we have $f(\mathbf{x}) + 1 \in \{1, 2, ..., (2n)^d\}$.

With some optimizing, one obtains Behrend's result: there exists a subset of $\{1, 2, ..., N\}$ of size $Ne^{-C\sqrt{\log N}}$ with no 3-term arithmetic progression.

Let $(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)$ be four distinct points on (both branches of) the hyperbola xy = 1. Suppose they lie on a circle.

 \mathbf{T}/\mathbf{F} : $x_1x_2x_3x_4 = 1$.

Let $(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)$ be four distinct points on (both branches of) the hyperbola xy = 1. Suppose they lie on a circle.

T/F: $x_1x_2x_3x_4 = 1$.

T: Suppose the circle is given by $(x-a)^2 + (y-b)^2 = R^2$. Then x_1, x_2, x_3, x_4 are roots of

$$(x-a)^2 + (\frac{1}{x} - b)^2 = R^2.$$

This is secretly a quartic polynomial in x with constant term 1. So $x_1x_2x_3x_4 = 1$.

T/F: There exist **unique** bijections $f, g, h : \mathbb{N} \to \mathbb{N}$ such that for all $n \in \mathbb{N}$,

$$f(n)^3 + g(n)^3 + h(n)^3 = 3ng(n)h(n).$$

T/F: There exist **unique** bijections $f, g, h : \mathbb{N} \to \mathbb{N}$ such that for all $n \in \mathbb{N}$,

$$f(n)^3 + g(n)^3 + h(n)^3 = 3ng(n)h(n).$$

T: We have

$$f(n)^3 - n^3 + (g(n)^3 + h(n)^3 + n^3 - 3ng(n)h(n)) = 0.$$

By AM-GM, since $g(n), h(n), n \ge 0$, we have

$$g(n)^3 + h(n)^3 + n^3 - 3ng(n)h(n) \ge 0$$

and so $f(n) \leq n$ for all $n \in \mathbb{N}$. Since f is a bijection, we see that f(n) = n for all $n \in \mathbb{N}$. This also means that equality of AM-GM is satisfied and so g(n) = h(n) = n for all $n \in \mathbb{N}$ as well.

For any positive integer n, let S_n denote the group of all permutations of $\{1, \ldots, n\}$. For each $\sigma \in S_n$, let $Orb(\sigma)$ denote the number of cycles of σ (which is the same as the number of orbits as σ acts on $\{1, \ldots, n\}$).

$$\mathbf{T/F}$$
: $\frac{1}{69!} \sum_{\sigma \in S_{69}} \mathrm{Orb}(\sigma) < 4.$

For any positive integer n, let S_n denote the group of all permutations of $\{1, \ldots, n\}$. For each $\sigma \in S_n$, let $Orb(\sigma)$ denote the number of cycles of σ (which is the same as the number of orbits as σ acts on $\{1, \ldots, n\}$).

$$\mathbf{T/F}$$
: $\frac{1}{69!} \sum_{\sigma \in S_{69}} \operatorname{Orb}(\sigma) < 4.$

F: For each positive integer n, let X_n denote the number of cycles of a randomly chosen $\sigma \in S_n$. Then depending on if n is fixed, we have

$$E(X_n) = \frac{1}{n}(E(X_{n-1}) + 1) + \frac{n-1}{n}E(X_{n-1}) = E(X_{n-1}) + \frac{1}{n}.$$

Since $E(X_1) = 1$, we have

$$E(X_{69}) = \sum_{k=1}^{69} \frac{1}{k} > 4.$$

T/F: There does not exist $B \in M_{69 \times 69}(\mathbb{R})$ such that $\dim_{\mathbb{R}}(\{BAB : A \in M_{69 \times 69}(\mathbb{R})\}) = 2025$.

 \mathbf{T}/\mathbf{F} : There does not exist $B \in M_{69 \times 69}(\mathbb{R})$ such that $\dim_{\mathbb{R}}(\{BAB : A \in M_{69 \times 69}(\mathbb{R})\}) = 2025$.

F: Suppose $B \in M_{n \times n}(\mathbb{R})$ with rank r. Consider the linear map $T : A \mapsto BAB$. The kernel of T consists of $A \in M_{n \times n}(\mathbb{R})$ such that $A : \mathbb{R}^n \to \mathbb{R}^n$ such that $A(\operatorname{Col}(B)) \subseteq \operatorname{Null}(B)$. Hence

$$\dim(\ker(T)) = (n-r)n + r(n-r).$$

Hence

$$\dim(\text{im}(T)) = n^2 - 2r(n-r) = r^2.$$

Here, we simply take any B with rank 45.

This result can be used to prove that a group automorphism of $M_{n\times n}(k)$ preserves the rank of matrix.

T/F: There exists $a, b, c \in \mathbb{Z}$ such that $|\zeta_{13}^a + \zeta_{13}^b + \zeta_{13}^c + 1| = \sqrt{3}$, where $\zeta_{13} = e^{2\pi i/13}$.

T/F: There exists $a, b, c \in \mathbb{Z}$ such that $|\zeta_{13}^a + \zeta_{13}^b + \zeta_{13}^c + 1| = \sqrt{3}$, where $\zeta_{13} = e^{2\pi i/13}$.

T: Squaring both sides, we find that we need

$$1 + \sum_{x \neq y \in \{a, b, c, 0\}} \zeta_{13}^{x-y} = 0.$$

In other words, it is enough to find a > b > c > 0 such that $\{a - b, a - c, b - c, a, b, c\} = \{1, 2, 3, 4, 5, 6\}$. We take a = 6, b = 5, c = 2.

Note a = 9, b = 3, c = 1 also works as $\{a - b, a - c, b - c, a, b, c\} = \{1, 2, 3, 6, 8, 9\}$ has no repeats and their negatives cover the rest of the residue classes mod 13.

$$\mathbf{T}/\mathbf{F}: \int_0^1 \frac{\sqrt{1+8x-8x^3}}{4x} - \sqrt{x^4-x+1} - \frac{1}{4x} dx \notin \mathbb{Q}.$$

T/F:
$$\int_0^1 \frac{\sqrt{1+8x-8x^3}}{4x} - \sqrt{x^4-x+1} - \frac{1}{4x} dx \notin \mathbb{Q}.$$

F: If we set

$$y = \frac{\sqrt{1 + 8x - 8x^3}}{4x} - \frac{1}{4x} = \frac{-1 + \sqrt{1 - 4 \cdot (2x)(x^2 - 1)}}{2 \cdot 2x},$$

then y satisfies the quadratic equation

$$2xy^2 + y + (x^2 - 1) = 0.$$

Note that as x goes from 0 to 1, y goes from 1 to 0. Viewing this as a quadratic equation in x, we have

$$x^2 + 2xy^2 + (y-1) = 0$$

which has (positive) solution

$$x = -y^2 + \sqrt{y^4 - y + 1}.$$

In other words,

$$\int_0^1 \frac{\sqrt{1+8x-8x^3}}{4x} - \frac{1}{4x} \, dx = \int_0^1 -y^2 + \sqrt{y^4-y+1} \, dy.$$

Hence the given integral equals

$$\int_0^1 -y^2 \, dy = -\frac{1}{3} \in \mathbb{Q}.$$

Given a depressed quartic $y^4 + a_2y^2 + a_1y + a_0$, we express it as

$$y^4 + a_2y^2 + a_1y + a_0 = \Delta_x \left(\frac{1}{4}x^2 + xy^2 - (a_2y^2 + a_1y + a_0) \right)$$

where Δ_x denotes the discriminant as a polynomial in x. If we compute its discriminant as a polynomial in y, we have

$$\Delta_y \left((x - a_2)y^2 - a_1y + (\frac{1}{4}x^2 - a_0) \right) = -x^3 + a_2x^2 + 4a_0x + a_1^2$$

which is exactly the negative of the resolvent cubic of the original quartic!

A positive integer is a Gian's integer if it is of the form $a^4 + b^3$ for some positive integers a, b.

 \mathbf{T}/\mathbf{F} : For any integer $n \geq 3$, there exist infinitely many integers m such that there are exactly n+1 Gian's integers among $m+1, m+2, \ldots, m+n^3$.

A positive integer is a Gian's integer if it is of the form $a^4 + b^3$ for some positive integers a, b.

 \mathbf{T}/\mathbf{F} : For any integer $n \geq 3$, there exist infinitely many integers m such that there are exactly n+1 Gian's integers among $m+1, m+2, \ldots, m+n^3$.

T: For each $m \in \mathbb{N}$, let G(m) denote the number of Gian's integers among $m+1, m+2, \ldots, m+n^3$. Note that $G(m+1)-G(m) \in \{-1,0,1\}$ for all $m \in \mathbb{N}$. The key idea is to construct two increasing sequences $(s_i)_{i=1}^{\infty}$ and $(t_i)_{i=1}^{\infty}$ such that $G(s_i)=0$ and $G(t_i)\geq n+1$ for all i. Suppose we have such two sequences. Then for any s_i , we can find some $t_i>s_i$ and then there exists $m \in [s_i,t_i]$ such that G(m)=n+1.

We construct the s_i first. Let $N \ge 2$ be any positive integer. Then there are less than N^7 Gian's integers in $[0, N^{12}]$. Divide the interval $[0, N^{12}]$ into N^7 intervals of length N^5 . Then at least one of them contains no Gian's integers and it's not $[0, N^5]$. In other words, if $N^5 > n^3$, then there exists some $m \in [N^5, N^{12} - N^5]$ such that G(m) = 0. Take $N_1 = n$ and choose N_{i+1} so that $N_{i+1}^5 > N_i^{12} - N_i^5$. Then we may find s_i in the disjoint intervals $[N_i^5, N_i^{12} - N_i^5]$.

To construct the t_i , we simply take $t_i = i^{12}$. Then $i^{12} + 1^3, \ldots, i^{12} + n^3, 2^4 + i^{12}$ are all n + 1 distinct Gian's integers as $2^4 < n^3$ and 2^4 is not a cube.

For any positive integer m, let S(m) be the number of positive integers n < lcm(1, 2, ..., m) such that its remainders when divided by 2, 3, ..., m are all distinct.

T/F: S(2025) - 1 is a power of 2.

For any positive integer m, let S(m) be the number of positive integers n < lcm(1, 2, ..., m) such that its remainders when divided by 2, 3, ..., m are all distinct.

T/F: S(2025) - 1 is a power of 2.

T: The integer n is determined by its remainders mod $2, 3, \ldots, m$. So we are really counting the number of possible remainders.

Claim: If $p \mid n$ for some p = 3, ..., m, then p > m/2 is a prime.

Proof: Note that n is also divisible by any divisor of p. So p must be prime. Moreover for $k = 2, 3, \ldots, p-1$, we must have

$$n \equiv k - 1 \equiv -1 \pmod{k}.$$

Now p + 1 is not a prime and for any proper divisor $d \mid p + 1$, we have d < p and so $n \equiv -1 \pmod{d}$. In other words,

$$n \equiv -1 \equiv p \pmod{p+1}.$$

Note that we have used 0 and p. Since $p \mid n$, there is no more possible remainder for $n \mod 2p$. Therefore, 2p > m. \square

Consider first the number of odd n. Now $n \equiv 1 \pmod 2$. The Claim above implies that the remainder 0 cannot appear mod k for any $k \leq m/2$. So we must have $n \equiv k-1 \equiv -1 \pmod k$ for all such k. For any composite $k \in (m/2, m]$ with at least two prime divisors, all of its proper divisors are at most m/2 and so $n \equiv -1 \pmod k$. Suppose next $k = p^s \in (m/2, m]$ for some prime p and $s \geq 2$. We know p < m/2 and so $n \equiv -1 \pmod p$, implying that $n \equiv \ell p - 1 \pmod p^2$ for some $\ell = 2, \ldots, p$. However for $\ell = 2, \ldots, p - 1$,

we have $n \equiv -1 \pmod{\ell p}$ since they have at least two prime divisors. Hence $n \equiv -1 \pmod{p^2}$. The same argument then can be repeated to give $n \equiv -1 \pmod{p^s}$.

Let $p_1 < \cdots < p_t$ be all the primes in (m/2, m]. The possible remainders left are $\{0, p_1 - 1, \dots, p_t - 1\}$. There are two choices (0 or $p_1 - 1$) for the remainder mod p_1 , and once that's chosen, there are two choices for p_2 and so on. Hence, we have 2^t possible odd n's.

Consider now the number of even n. Since $2 \mid n$, the remainders of n mod all even numbers are also even. Hence it is easy to see that $n \equiv k-2 \pmod k$ for all even k and then also $n \equiv k-2 \pmod k$ for all odd k. Hence there is only one possible even n brining the total number to

$$2^{\pi(m)-\pi(m/2)} + 1.$$

16: Pizza/Tie break, if needed (3 minutes)

Compute

$$\sum_{k=1}^{8} e^{-k^2 \pi/9}.$$

16: Pizza/Tie break 2, if needed (3 minutes)

Compute

$$\sum_{k=1}^{2024} e^{-k^2\pi/2025}.$$

16: Pizza/Tie break, if needed (3 minutes)

Compute

$$\sum_{k=1}^{8} e^{-k^2 \pi/9}.$$

```
1 # Online Python compiler (interpreter) to run Python online.
2 # Write Python 3 code in this online editor and run it.
3 import math
4
5 n = 9
6 sum_S = 0
7
8 * for k in range(1, n): # Range is from 1 to 2024 (inclusive)
9 term = math.exp(-k*k*math.pi / n)
10 sum_S += term
11
12 print(sum_S)
13
1.00000000000010505
```

It can be shown that

$$\sum_{k=1}^{n-1} e^{-k^2 \pi/n} \approx \frac{-1 + \sqrt{n}}{2}.$$