
Bernoulli Trial 2023



1: (2 minutes)

T/F: There is a complex number z with |z| = 1 such that

z2023 + z4 + 1 = 0.



1: (2 minutes)

T/F: There is a complex number z with |z| = 1 such that

z2023 + z4 + 1 = 0.

F: Since 1, z2023, z4 all have length 1, they must form an equilateral triangle if they add up to 0. So
{z2023, z4} = {ζ3, ζ23}. Then z = z2024−2023 ∈ {1, ζ3, ζ23} but then since 2023 ≡ 4 (mod 3), we have z2023 = z4.
Contradiction.

Using the same argument, one can show that if gcd(n,m) = 1, then zm + zn + 1 = 0 has a solution with
|z| = 1 if and only if n ≡ 1,m ≡ 2 (mod 3) or n ≡ 2,m ≡ 1 (mod 3).



2: (2 minutes)

T/F: The sum of the digits of the sum of the digits of the sum of the digits of 20232023 is 7.



2: (2 minutes)

T/F: The sum of the digits of the sum of the digits of the sum of the digits of 20232023 is 7.

T: Let s(n) denote the sum of the digits of n. Since log10(2023) < 3.5 as
√
10 > 3, we see that 20232023 has

less than 7100 digits, which means that s(20232023) < 7100× 9 = 63900. Then s(s(20232023)) < s(69999) =
42 and s(s(s(20232023))) < s(49) = 13. Next we compute 20232023 mod 9. Note that 2023 ≡ 7 (mod 9) and
73 ≡ 1 (mod 9) and so 20232023 ≡ 71 = 7 (mod 9). The only positive integer less than 13 that is congruent
to 7 modulo 9 is 7.

This question is from IMO 1975 P4 where the number was 44444444; the exact same analysis applies.



3: (3 minutes)

A cubical number is a positive integer that is equal to the sum of the cubes of its digits.



3: (3 minutes)

A cubical number is a positive integer that is equal to the sum of the cubes of its digits.

T/F: There is a unique 3-digit cubical number n such that n+ 1 is also cubical.

T: There are three possibilities:

a3 + b3 + (c+ 1)3 = a3 + b3 + c3 + 1,

a3 + (b+ 1)3 + 03 = a3 + b3 + 93 + 1,

(a+ 1)3 + 03 + 03 = a3 + 93 + 93 + 1.

The last two cases are not possible because the difference of two consecutive cubes of single digit numbers
is too small to cover the loss of 93. The first possibility gives c = 0. So now we have 100a+ 10b = a3 + b3.
Checking some small values gives 33 + 73 = 370.

It turns out that 10 | a3 + b3 if and only if 10 | a+ b. The only cubical numbers are 1, 153, 370, 371, 407.



4: (3 minutes)

T/F: ∫ ∞

0

ln(2x)

1 + x2
dx <

π

2
.



4: (3 minutes)

T/F: ∫ ∞

0

ln(2x)

1 + x2
dx <

π

2
.

T: Consider the substitution u = 1/x. We have∫ ∞

0

ln(2x)

1 + x2
dx =

∫ ∞

0

ln(2u−1)

1 + u2
du.

Their sum is

2 ln 2

∫ ∞

0

1

1 + x2
dx = π ln 2 < π.



5: (3 minutes)

T/F: Every Gaussian integer a+ bi with a, b ∈ Z can be written as a finite sum of distinct powers of 1+ i.



5: (3 minutes)

T/F: Every Gaussian integer a+ bi with a, b ∈ Z can be written as a finite sum of distinct powers of 1+ i.

F: The number i cannot be written in this form. First it is easy to see that if a number can be written as
a sum of distinct powers of 1 + i, such a representation must be unique, because 1 + i is not a unit. Next
we observe that i− 1 = i(1 + i). This means that if i = a0 + a1(1 + i) + · · ·+ an(1 + i)n with an ̸= 0, then

a0 + a1(1 + i) + · · ·+ an(1 + i)n = 1 + a0(1 + i) + a1(1 + i)2 + · · ·+ an(1 + i)n+1.

Hence an = 0. Contradiction.

It turns out that exactly one number out of z and i− z can be written as a finite sum of distinct powers
of 1 + i. To prove this, consider the function

f(a+ bi) =

{
(a+ bi)/(1 + i) if a ≡ b (mod 2);

(a− 1 + bi)/(1 + i) if a ̸≡ b (mod 2).

Then it is easy to see that z can be written if and only if f(z) can be written. It is also not hard to prove
that the sequence z1 = f(z), zn+1 = f(zn) is eventually constant, and equals to 0 or i. Finally, we have
f(i− z) = i− f(z).



6: (3 minutes)

Let n be a positive integer such that n ≡ 6 (mod 7).

T/F: The equation
4

n
=

1

x
+

1

y
+

1

z

has solutions in x, y, z ∈ N.



6: (3 minutes)

Let n be a positive integer such that n ≡ 6 (mod 7).

T/F: The equation
4

n
=

1

x
+

1

y
+

1

z

has solutions in x, y, z ∈ N.

T: Write n+ 1 = 7k for some k ∈ N. Dividing by kn gives
1

k
+

1

kn
=

7

n
. So

1

n
+

1

k
+

1

kn
=

8

n
. Dividing by

2 gives
1

2n
+

1

2k
+

1

2kn
=

4

n
.

Erdös-Straus conjectured that this equation is solvable for all positive integers n ≥ 2. This conjecture is
currently open. For X > 0, let N(X) be the number of positive integers n < X such that this equation is
not solvable. Then by considering more primes, one can prove

N(X) ≪ϵ
X

(logX)9/4−ϵ
.



A useful related result is that the equation a/b = 1/x+ 1/y is solvable if there are divisors d1, d2 of b such
that a | d1 + d2. Indeed, let k = (d1 + d2)/a and take x = kb/d1 and y = kb/d2.



7: (5 minutes)

T/F: There exists a set
A ⊆ {(i, j) ∈ Z2 : 1 ≤ i ≤ 2023, 1 ≤ j ≤ 2023}

such that for any i, j = 1, . . . , 2023, there exist exactly 7 integers k such that (i, k) ∈ A and (k, j) ∈ A.



7: (5 minutes)

T/F: There exists a set
A ⊆ {(i, j) ∈ Z2 : 1 ≤ i ≤ 2023, 1 ≤ j ≤ 2023}

such that for any i, j = 1, . . . , 2023, there exist exactly 7 integers k such that (i, k) ∈ A and (k, j) ∈ A.

T: Let n = 2023 and m = 7. Since 2023 = 7× 172, it might help to consider the easier case where n = 172

and m = 1. Let MA be the n × n matrix whose (i, j) entry is 1 if (i, j) ∈ A and 0 if otherwise. For any
positive integer d, let Jd denote the d × d matrix with 1’s everywhere. We are then looking for a set A

such that M 2
A = mJn.

We claim first that if such an A exists for (n,m), then it also exists for (dn, dm) for any positive integer
d. Indeed, simply take the dn × dn matrix MA′ such that all of its n × n blocks are MA. Then it is easy
to see that M 2

A′ = dmJdn. Moreover, the entries of MA′ are all 1 and 0, so it comes from a set A′.

It now remains to construct the set A when n = 172 and m = 1. We observe that every integer between 1
and 172 can be written uniquely as 17(q − 1) + r for some q, r = 1, . . . , 17. We let

A = {(17(q − 1) + r, 17(r − 1) + d) : 1 ≤ q, r, d ≤ 17}.



Then given i = 17(q1 − 1) + r1 and j = 17(q2 − 1) + r2, the unique integer k such that (i, k), (k, j) ∈ A is
k = 17(r1 − 1) + q2.

For which other pairs (n,m) is this possible? The matrix mJn should have an integral square root. The
eigenvalues of mJn are 0, . . . , 0,mn. So we need mn to be a square since the trace of MA is an integer.
Since the trace of MA is at most n, we also have m ≤ n. In other words, we need n = dt2 and m = ds2 for
some coprime integers s, t with s ≤ t. We have already seen that the extra common factor of d is harmless.
Let’s consider n = t2 and m = s2. We use the same idea and write every integer from 1 to t2 uniquely
as t(q − 1) + r for some q, r = 1, . . . , t. Then given i = t(q1 − 1) + r1 and j = t(q2 − 1) + r2, to find s2

integers k such that (i, k), (k, j) ∈ A, we ideally want k = t(q3 − 1) + r3 where there are s choices for q3
and s choices for r3. To arrange for this, we let B be any subset of {1, . . . , t} of size s. Then we take

A = {(t(q − 1) + r, t(q′ − 1) + r′) : 1 ≤ q, r, q′, r′ ≤ t, q′ − r ≡ b (mod t) for some b ∈ B}.

Therefore, such a set A exists if and only if mn is a square and m ≤ n.



8: (2 minutes)

T/F: There exists a polynomial f(x) ∈ Z[x], an integer n ≥ 3, and distinct integers a1, . . . , an such that

f(ai) = ai+1 for i = 1, . . . , n− 1

and
f(an) = a1.



8: (2 minutes)

T/F: There exists a polynomial f(x) ∈ Z[x], an integer n ≥ 3, and distinct integers a1, . . . , an such that

f(ai) = ai+1 for i = 1, . . . , n− 1

and
f(an) = a1.

F: Standard polynomial division result tells us that

a2 − a1 | a3 − a2 | · · · | an − an−1 | a1 − an | a2 − a1.

Hence there is a nonzero integer c such that all the above differences equal ±c. Since they add up to 0,
they can’t all be c or −c. So there exists an index i (mod n) such that ai − ai−1 = −(ai+1 − ai), which
then implies ai+1 = ai−1, contradicting the assumption that they are distinct.



9: (2 minutes)

A Fermat number is a number of the form 22
n

+ 1 for some non-negative integer n.

T/F: Every two distinct Fermat numbers are coprime.



9: (2 minutes)

A Fermat number is a number of the form 22
n

+ 1 for some non-negative integer n.

T/F: Every two distinct Fermat numbers are coprime.

T: Suppose n, k ∈ N and
d = gcd(22

n

+ 1, 22
n+k

+ 1).

Then d | 22n+1 − 1 and so d | 22n+k − 1. This implies d | 2. So d = 1.

Note that if p is a prime divisor of 22
n

+ 1, then op(2) | 2n+1 in (Z/pZ)×. Since p ∤ 22n − 1, we see that
op(2) = 2n+1. So 2n+1 | p− 1. In fact, we can also prove that 2n+2 | p− 1. Since p ≡ 1 (mod 8), we know
that 2 is a square mod p. Let a ∈ Fp such that a2 = 2. Then a2

n+2

= 2n+1 = 1 in Z/pZ and a2
n+1

= 2n ̸= 1.
So o(a) = 2n+2 and it divides p− 1.



10: (4 minutes)

T/F:

lim
n→∞

n

2n

∫ 1

0

dx

xn + (1− x)n
<

π

4
.



10: (4 minutes)

T/F:

lim
n→∞

n

2n

∫ 1

0

dx

xn + (1− x)n
<

π

4
.

F: The integrand has a maximum of 2n−1 at 1/2 and decreases to 1 when x = 0 and x = 1. This suggests
setting u = x− 1/2 and then v = 2u to get

n

2n

∫ 1

0

dx

xn + (1− x)n
=

n

2

∫ 1

−1

dv

(1 + v)n + (1− v)n
.

Next we set w = nv to get
1

2

∫ n

−n

dw

(1 + w/n)n + (1− w/n)n

which we expect will converge to

1

2

∫ ∞

−∞

dw

ew + e−w
=

1

2
arctan(ew)

∣∣∣∣∞
−∞

=
π

4
.



To make the convergence rigorous, we use Lebesgue Dominated Convergence Theorem. Let

fn(w) =
χ[−n,n](w)

(1 + w/n)n + (1− w/n)n
.

Then

fn(w) ≤
1

(1 + |w|/n)n
≤ 1

(1 + |w|/2)2

for n ≥ 2 and ∫ ∞

−∞

dw

(1 + |w|/2)2
< ∞.

So

lim
n→∞

∫ ∞

−∞
fn(w) dw =

∫ ∞

−∞
lim
n→∞

fn(w) dw =

∫ ∞

−∞

dw

ew + e−w
.



11: (4 minutes)

Let A ⊆ Z2 be a set such that any open disc of radius 2023 contains at least one point in A.

T/F: For any coloring of the points in A with 11 colors, there exist 4 points in A with the same color and
they form a rectangle.



11: (4 minutes)

Let A ⊆ Z2 be a set such that any open disc of radius 2023 contains at least one point in A.

T/F: For any coloring of the points in A with 11 colors, there exist 4 points in A with the same color and
they form a rectangle.

T: Consider a huge square with side length 4046L with sides parallel to the coordinate axes. We can divide
it into L2 squares of side length 4046 and fit a disc of radius 2023 inside each of it. Hence, this square
contains at least L2 points in A. There are 4046L + 1 vertical grid lines in this square. So there exists
a vertical grid line with at least L2/(4046L + 1) points in A. By taking L large enough, say L = 50000,
there is a vertical grid line inside the box with at least 12 points in A, so then at least 2 points in A with
the same color. There are only finitely many possible configurations for 2 lattice points on a vertical line
of length 4046 · 50000 having one of the 11 colors, but there are infinitely many non-overlapping squares
with side length 4046 · 50000 that we can line up horizontally.

Obviously the numbers 2023 and 11 don’t matter.



12: (4 minutes)

A fair die (so that it has 1/6 chance of rolling each 1, 2, 3, 4, 5, 6) is rolled infinitely. For any positive integer
n, let an be the probability that a partial sum of n is reached.

T/F:

lim
n→∞

an <
π

11
.



12: (4 minutes)

A fair die (so that it has 1/6 chance of rolling each 1, 2, 3, 4, 5, 6) is rolled infinitely. For any positive integer
n, let an be the probability that a partial sum of n is reached.

T/F:

lim
n→∞

an <
π

11
.

F: We have the recursion formula

an+6 =
1

6
an +

1

6
an+1 + · · ·+ 1

6
an+5

where we put a0 = 1 and an = 0 for n < 0. Its generating function is then given by

F (x) =
∞∑
n=0

anx
n =

6

6− x− x2 − · · · − x6
.

We observe that

6− x− x2 − · · · − x6 = (1− x)(6 + 5x+ 4x2 + 3x3 + 2x4 + x5) = (1− x)(x− r1) · · · (x− r5)



where |r1|, . . . , |r5| > 1. Applying partial fraction decomposition gives

6

6− x− x2 − · · · − x6
=

A

1− x
+

5∑
i=1

Bi

x− ri
=

A

1− x
−

5∑
i=1

Bi/ri
1− x/ri

for some constants A,B1, . . . , B5. Multiplying by 6 − x − x2 − · · · − x6 and setting x = 1 gives A = 2/7.
Hence

lim
n→∞

an = lim
n→∞

(
2

7
−

5∑
i=1

Bi

rn+1
i

)
=

2

7
.

Finally
2

7
=

1

11

22

7
=

3.142857 . . .

11
>

π

11
.

Note that by working with the recursion formula, one can also show that the limit, if exists, must equal
2/7, which is enough to conclude that the given statement is false.



13: (4 minutes)

T/F:
17∑
n=0

n2023

(
17

n

)
(−1)n is divisible by 17!.



13: (4 minutes)

T/F:
17∑
n=0

n2023

(
17

n

)
(−1)n is divisible by 17!.

T: Note that
1

17!

(
17

n

)
(−1)n =

(−1)n

n!(17− n)!
=

∏
m̸=n

0≤m≤17

1

m− n
.

Consider now

f(x) =
17∑
n=0

n2023
∏
m̸=n

0≤m≤17

m− x

m− n
.

Then f(x) is a polynomial of degree at most 17 with f(n) = n2023 for n = 0, . . . , 17. Our goal is to show
that its x17-coefficient is an integer. In fact, we prove that f(x) ∈ Z[x]. Applying the division algorithm
to x2023 by (x− 0) · · · (x− 17) gives q(x), r(x) ∈ Z[x] with deg r ≤ 17 and

x2023 = (x− 0) · · · (x− 17)q(x) + r(x).

Then r(n) = n2023 for n = 0, . . . , 17. So r(x) = f(x).



14: (4 minutes)

T/F: For any continuous function g(x) : [−1, 1] → R,(∫ 1

−1

g(x) dx

)2

+

(∫ 1

−1

xg(x) dx

)2

≤ 2

∫ 1

−1

g(x)2 dx.



14: (4 minutes)

T/F: For any continuous function g(x) : [−1, 1] → R,(∫ 1

−1

g(x) dx

)2

+

(∫ 1

−1

xg(x) dx

)2

≤ 2

∫ 1

−1

g(x)2 dx.

T: Note that without the second term on the LHS, this is just Cauchy-Schwartz. So perhaps we should
use the more complete version. There is an orthonormal sequence {Pn(x)}∞n=0 of polynomials such that
deg(Pn(x)) = n and ∫ 1

−1

Pn(x)Pm(x) dx = δnm.

More precisely, we have P0(x) =
1√
2
, P1(x) =

√
3√
2
x.

Since continuous functions can be approximated by polynomials (in L∞), it is enough to consider poly-
nomials g(x), in which case we can write g(x) = a0P0(x) + · · · + adPd(x) where d = deg(g(x)). Now the
desired inequality is

2a20 +
2

3
a21 ≤ 2(a20 + a21 + · · ·+ a2d)

which is clearly true.



15: (5 minutes)

T/F: For any ϵ > 0, there are infinitely many positive integers n such that the largest prime factor of
n2 + 1 is at most ϵn.



15: (5 minutes)

T/F: For any ϵ > 0, there are infinitely many positive integers n such that the largest prime factor of
n2 + 1 is at most ϵn.

T: Let P (x) denote the largest prime divisor of x. The key starting point is the factorization

(2m2)2 + 1 = (2m2 − 2m+ 1)(2m2 + 2m+ 1).

So when n is of the form 2m2, P (n2 +1) is already at most around n. To lower it further, we want to find
m so that 2m2 − 2m+ 1 and 2m2 + 2m+ 1 have large prime divisors.

Lemma: Let f(x) ∈ Z[x] be a non-constant polynomial. Then there are infinitely many primes p dividing
f(a) for some a ∈ Z.

Proof: Let a0 = f(0). If a0 = 0, then p | f(p) for all primes p. Suppose a0 ̸= 0. Then f(a0n!) =
a0(1 + n!g(n!)) has a prime divisor p > n for n large enough.

Let ℓ be big enough so that p1 = P (2ℓ2 − 2ℓ + 1) > 2023/ϵ. Then p1 | 2(ℓ + tp1)
2 − 2(ℓ + tp1) + 1 for any

t ∈ Z. We can not take t large enough so that for k = ℓ + tp1, q1 = P (2k2 − 2k + 1) ≥ p1 > 2023/ϵ and



q2 = P (2k2 + 2k + 1) > 2023/ϵ. The same is also for any m = k + sq1q2. Now q2 | 2m2 + 2m+ 1 and so

P (2m2 + 2m+ 1) ≤ max{q2,
2m2 + 2m+ 1

q2
} < ϵ(2m2).

Similarly for P (2m2 − 2m+ 1).

The more interesting question is of course the conjecture that n2 + 1 is prime infinitely often. The best
result currently (2020) is that P (n2 + 1) > n1.279 for infinitely many n.


