Bernoulli Trial 2023

 \mathbf{T}/\mathbf{F} : There is a complex number z with |z| = 1 such that

$$z^{2023} + z^4 + 1 = 0.$$

 \mathbf{T}/\mathbf{F} : There is a complex number z with |z| = 1 such that

$$z^{2023} + z^4 + 1 = 0.$$

F: Since $1, z^{2023}, z^4$ all have length 1, they must form an equilateral triangle if they add up to 0. So $\{z^{2023}, z^4\} = \{\zeta_3, \zeta_3^2\}$. Then $z = z^{2024-2023} \in \{1, \zeta_3, \zeta_3^2\}$ but then since $2023 \equiv 4 \pmod{3}$, we have $z^{2023} = z^4$. Contradiction.

Using the same argument, one can show that if gcd(n,m) = 1, then $z^m + z^n + 1 = 0$ has a solution with |z| = 1 if and only if $n \equiv 1, m \equiv 2 \pmod{3}$ or $n \equiv 2, m \equiv 1 \pmod{3}$.

 \mathbf{T}/\mathbf{F} : The sum of the digits of the sum of the digits of the sum of the digits of 2023^{2023} is 7.

 \mathbf{T}/\mathbf{F} : The sum of the digits of the sum of the digits of the sum of the digits of 2023^{2023} is 7.

T: Let s(n) denote the sum of the digits of n. Since $\log_{10}(2023) < 3.5$ as $\sqrt{10} > 3$, we see that 2023^{2023} has less than 7100 digits, which means that $s(2023^{2023}) < 7100 \times 9 = 63900$. Then $s(s(2023^{2023})) < s(69999) = 42$ and $s(s(s(2023^{2023}))) < s(49) = 13$. Next we compute $2023^{2023} \mod 9$. Note that $2023 \equiv 7 \pmod{9}$ and $7^3 \equiv 1 \pmod{9}$ and so $2023^{2023} \equiv 7^1 = 7 \pmod{9}$. The only positive integer less than 13 that is congruent to 7 modulo 9 is 7.

This question is from IMO 1975 P4 where the number was 4444^{4444} ; the exact same analysis applies.

A *cubical* number is a positive integer that is equal to the sum of the cubes of its digits.

A *cubical* number is a positive integer that is equal to the sum of the cubes of its digits.

 \mathbf{T}/\mathbf{F} : There is a unique 3-digit cubical number n such that n+1 is also cubical.

T: There are three possibilities:

$$a^{3} + b^{3} + (c+1)^{3} = a^{3} + b^{3} + c^{3} + 1,$$

$$a^{3} + (b+1)^{3} + 0^{3} = a^{3} + b^{3} + 9^{3} + 1,$$

$$(a+1)^{3} + 0^{3} + 0^{3} = a^{3} + 9^{3} + 9^{3} + 1.$$

The last two cases are not possible because the difference of two consecutive cubes of single digit numbers is too small to cover the loss of 9^3 . The first possibility gives c = 0. So now we have $100a + 10b = a^3 + b^3$. Checking some small values gives $3^3 + 7^3 = 370$.

It turns out that $10 \mid a^3 + b^3$ if and only if $10 \mid a + b$. The only cubical numbers are 1, 153, 370, 371, 407.

T/F:

$$\int_0^\infty \frac{\ln(2x)}{1+x^2} \, dx < \frac{\pi}{2}.$$

T/F:

$$\int_0^\infty \frac{\ln(2x)}{1+x^2} \, dx < \frac{\pi}{2}.$$

T: Consider the substitution u = 1/x. We have

$$\int_0^\infty \frac{\ln(2x)}{1+x^2} \, dx = \int_0^\infty \frac{\ln(2u^{-1})}{1+u^2} \, du$$

Their sum is

$$2\ln 2 \int_0^\infty \frac{1}{1+x^2} \, dx = \pi \ln 2 < \pi.$$

 \mathbf{T}/\mathbf{F} : Every Gaussian integer a + bi with $a, b \in \mathbb{Z}$ can be written as a finite sum of distinct powers of 1 + i.

 \mathbf{T}/\mathbf{F} : Every Gaussian integer a + bi with $a, b \in \mathbb{Z}$ can be written as a finite sum of distinct powers of 1 + i.

F: The number *i* cannot be written in this form. First it is easy to see that if a number can be written as a sum of distinct powers of 1 + i, such a representation must be unique, because 1 + i is not a unit. Next we observe that i - 1 = i(1 + i). This means that if $i = a_0 + a_1(1 + i) + \cdots + a_n(1 + i)^n$ with $a_n \neq 0$, then

$$a_0 + a_1(1+i) + \dots + a_n(1+i)^n = 1 + a_0(1+i) + a_1(1+i)^2 + \dots + a_n(1+i)^{n+1}.$$

Hence $a_n = 0$. Contradiction.

It turns out that exactly one number out of z and i - z can be written as a finite sum of distinct powers of 1 + i. To prove this, consider the function

$$f(a+bi) = \begin{cases} (a+bi)/(1+i) & \text{if } a \equiv b \pmod{2}; \\ (a-1+bi)/(1+i) & \text{if } a \not\equiv b \pmod{2}. \end{cases}$$

Then it is easy to see that z can be written if and only if f(z) can be written. It is also not hard to prove that the sequence $z_1 = f(z)$, $z_{n+1} = f(z_n)$ is eventually constant, and equals to 0 or *i*. Finally, we have f(i-z) = i - f(z).

Let n be a positive integer such that $n \equiv 6 \pmod{7}$.

 \mathbf{T}/\mathbf{F} : The equation

$$\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$$

has solutions in $x, y, z \in \mathbb{N}$.

Let n be a positive integer such that $n \equiv 6 \pmod{7}$.

 \mathbf{T}/\mathbf{F} : The equation

$$\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$$

has solutions in $x, y, z \in \mathbb{N}$.

T: Write n + 1 = 7k for some $k \in \mathbb{N}$. Dividing by kn gives $\frac{1}{k} + \frac{1}{kn} = \frac{7}{n}$. So $\frac{1}{n} + \frac{1}{k} + \frac{1}{kn} = \frac{8}{n}$. Dividing by 2 gives $\frac{1}{2n} + \frac{1}{2k} + \frac{1}{2kn} = \frac{4}{n}$.

Erdös-Straus conjectured that this equation is solvable for all positive integers $n \ge 2$. This conjecture is currently open. For X > 0, let N(X) be the number of positive integers n < X such that this equation is not solvable. Then by considering more primes, one can prove

$$N(X) \ll_{\epsilon} \frac{X}{(\log X)^{9/4-\epsilon}}.$$

A useful related result is that the equation a/b = 1/x + 1/y is solvable if there are divisors d_1, d_2 of b such that $a \mid d_1 + d_2$. Indeed, let $k = (d_1 + d_2)/a$ and take $x = kb/d_1$ and $y = kb/d_2$.

 $\mathbf{T}/\mathbf{F}:$ There exists a set

 $A \subseteq \{(i, j) \in \mathbb{Z}^2 \colon 1 \le i \le 2023, 1 \le j \le 2023\}$

such that for any i, j = 1, ..., 2023, there exist exactly 7 integers k such that $(i, k) \in A$ and $(k, j) \in A$.

 \mathbf{T}/\mathbf{F} : There exists a set

 $A \subseteq \{(i, j) \in \mathbb{Z}^2 \colon 1 \le i \le 2023, 1 \le j \le 2023\}$

such that for any i, j = 1, ..., 2023, there exist exactly 7 integers k such that $(i, k) \in A$ and $(k, j) \in A$.

T: Let n = 2023 and m = 7. Since $2023 = 7 \times 17^2$, it might help to consider the easier case where $n = 17^2$ and m = 1. Let M_A be the $n \times n$ matrix whose (i, j) entry is 1 if $(i, j) \in A$ and 0 if otherwise. For any positive integer d, let J_d denote the $d \times d$ matrix with 1's everywhere. We are then looking for a set Asuch that $M_A^2 = mJ_n$.

We claim first that if such an A exists for (n, m), then it also exists for (dn, dm) for any positive integer d. Indeed, simply take the $dn \times dn$ matrix $M_{A'}$ such that all of its $n \times n$ blocks are M_A . Then it is easy to see that $M_{A'}^2 = dm J_{dn}$. Moreover, the entries of $M_{A'}$ are all 1 and 0, so it comes from a set A'.

It now remains to construct the set A when $n = 17^2$ and m = 1. We observe that every integer between 1 and 17^2 can be written uniquely as 17(q-1) + r for some q, r = 1, ..., 17. We let

$$A = \{ (17(q-1) + r, 17(r-1) + d) \colon 1 \le q, r, d \le 17 \}.$$

Then given $i = 17(q_1 - 1) + r_1$ and $j = 17(q_2 - 1) + r_2$, the unique integer k such that $(i, k), (k, j) \in A$ is $k = 17(r_1 - 1) + q_2$.

For which other pairs (n, m) is this possible? The matrix mJ_n should have an integral square root. The eigenvalues of mJ_n are $0, \ldots, 0, mn$. So we need mn to be a square since the trace of M_A is an integer. Since the trace of M_A is at most n, we also have $m \leq n$. In other words, we need $n = dt^2$ and $m = ds^2$ for some coprime integers s, t with $s \leq t$. We have already seen that the extra common factor of d is harmless. Let's consider $n = t^2$ and $m = s^2$. We use the same idea and write every integer from 1 to t^2 uniquely as t(q-1) + r for some $q, r = 1, \ldots, t$. Then given $i = t(q_1 - 1) + r_1$ and $j = t(q_2 - 1) + r_2$, to find s^2 integers k such that $(i, k), (k, j) \in A$, we ideally want $k = t(q_3 - 1) + r_3$ where there are s choices for q_3 and s choices for r_3 . To arrange for this, we let B be any subset of $\{1, \ldots, t\}$ of size s. Then we take

$$A = \{ (t(q-1) + r, t(q'-1) + r') \colon 1 \le q, r, q', r' \le t, \quad q'-r \equiv b \pmod{t} \text{ for some } b \in B \}.$$

Therefore, such a set A exists if and only if mn is a square and $m \leq n$.

T/F: There exists a polynomial $f(x) \in \mathbb{Z}[x]$, an integer $n \geq 3$, and distinct integers a_1, \ldots, a_n such that

$$f(a_i) = a_{i+1}$$
 for $i = 1, \dots, n-1$

and

$$f(a_n) = a_1.$$

T/F: There exists a polynomial $f(x) \in \mathbb{Z}[x]$, an integer $n \geq 3$, and distinct integers a_1, \ldots, a_n such that

$$f(a_i) = a_{i+1}$$
 for $i = 1, \dots, n-1$

and

$$f(a_n) = a_1.$$

F: Standard polynomial division result tells us that

$$a_2 - a_1 | a_3 - a_2 | \cdots | a_n - a_{n-1} | a_1 - a_n | a_2 - a_1.$$

Hence there is a nonzero integer c such that all the above differences equal $\pm c$. Since they add up to 0, they can't all be c or -c. So there exists an index $i \pmod{n}$ such that $a_i - a_{i-1} = -(a_{i+1} - a_i)$, which then implies $a_{i+1} = a_{i-1}$, contradicting the assumption that they are distinct.

A *Fermat number* is a number of the form $2^{2^n} + 1$ for some non-negative integer n.

 \mathbf{T}/\mathbf{F} : Every two distinct Fermat numbers are coprime.

A *Fermat number* is a number of the form $2^{2^n} + 1$ for some non-negative integer n.

 \mathbf{T}/\mathbf{F} : Every two distinct Fermat numbers are coprime.

T: Suppose $n, k \in \mathbb{N}$ and

$$d = \gcd(2^{2^n} + 1, 2^{2^{n+k}} + 1).$$

Then $d \mid 2^{2^{n+1}} - 1$ and so $d \mid 2^{2^{n+k}} - 1$. This implies $d \mid 2$. So d = 1.

Note that if p is a prime divisor of $2^{2^n} + 1$, then $o_p(2) | 2^{n+1}$ in $(\mathbb{Z}/p\mathbb{Z})^{\times}$. Since $p \nmid 2^{2^n} - 1$, we see that $o_p(2) = 2^{n+1}$. So $2^{n+1} | p - 1$. In fact, we can also prove that $2^{n+2} | p - 1$. Since $p \equiv 1 \pmod{8}$, we know that 2 is a square mod p. Let $a \in \mathbb{F}_p$ such that $a^2 = 2$. Then $a^{2^{n+2}} = 2^{n+1} = 1$ in $\mathbb{Z}/p\mathbb{Z}$ and $a^{2^{n+1}} = 2^n \neq 1$. So $o(a) = 2^{n+2}$ and it divides p - 1.

T/F:

$$\lim_{n \to \infty} \frac{n}{2^n} \int_0^1 \frac{dx}{x^n + (1-x)^n} < \frac{\pi}{4}.$$

T/F:

$$\lim_{n \to \infty} \frac{n}{2^n} \int_0^1 \frac{dx}{x^n + (1-x)^n} < \frac{\pi}{4}.$$

F: The integrand has a maximum of 2^{n-1} at 1/2 and decreases to 1 when x = 0 and x = 1. This suggests setting u = x - 1/2 and then v = 2u to get

$$\frac{n}{2^n} \int_0^1 \frac{dx}{x^n + (1-x)^n} = \frac{n}{2} \int_{-1}^1 \frac{dv}{(1+v)^n + (1-v)^n}.$$

Next we set w = nv to get

$$\frac{1}{2} \int_{-n}^{n} \frac{dw}{(1+w/n)^n + (1-w/n)^n}$$

which we expect will converge to

$$\frac{1}{2}\int_{-\infty}^{\infty}\frac{dw}{e^w+e^{-w}} = \frac{1}{2}\arctan(e^w)\Big|_{-\infty}^{\infty} = \frac{\pi}{4}.$$

To make the convergence rigorous, we use Lebesgue Dominated Convergence Theorem. Let

$$f_n(w) = \frac{\chi_{[-n,n]}(w)}{(1+w/n)^n + (1-w/n)^n}.$$

Then

$$f_n(w) \le \frac{1}{(1+|w|/n)^n} \le \frac{1}{(1+|w|/2)^2}$$

for $n \ge 2$ and

$$\int_{-\infty}^{\infty} \frac{dw}{(1+|w|/2)^2} < \infty.$$

So

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f_n(w) \, dw = \int_{-\infty}^{\infty} \lim_{n \to \infty} f_n(w) \, dw = \int_{-\infty}^{\infty} \frac{dw}{e^w + e^{-w}}.$$

Let $A \subseteq \mathbb{Z}^2$ be a set such that any open disc of radius 2023 contains at least one point in A.

 \mathbf{T}/\mathbf{F} : For any coloring of the points in A with 11 colors, there exist 4 points in A with the same color and they form a rectangle.

Let $A \subseteq \mathbb{Z}^2$ be a set such that any open disc of radius 2023 contains at least one point in A.

 \mathbf{T}/\mathbf{F} : For any coloring of the points in A with 11 colors, there exist 4 points in A with the same color and they form a rectangle.

T: Consider a huge square with side length 4046L with sides parallel to the coordinate axes. We can divide it into L^2 squares of side length 4046 and fit a disc of radius 2023 inside each of it. Hence, this square contains at least L^2 points in A. There are 4046L + 1 vertical grid lines in this square. So there exists a vertical grid line with at least $L^2/(4046L + 1)$ points in A. By taking L large enough, say L = 50000, there is a vertical grid line inside the box with at least 12 points in A, so then at least 2 points in A with the same color. There are only finitely many possible configurations for 2 lattice points on a vertical line of length $4046 \cdot 50000$ having one of the 11 colors, but there are infinitely many non-overlapping squares with side length $4046 \cdot 50000$ that we can line up horizontally.

Obviously the numbers 2023 and 11 don't matter.

A fair die (so that it has 1/6 chance of rolling each 1, 2, 3, 4, 5, 6) is rolled infinitely. For any positive integer n, let a_n be the probability that a partial sum of n is reached.

T/F:

$$\lim_{n \to \infty} a_n < \frac{\pi}{11}.$$

A fair die (so that it has 1/6 chance of rolling each 1, 2, 3, 4, 5, 6) is rolled infinitely. For any positive integer n, let a_n be the probability that a partial sum of n is reached.

T/F:

$$\lim_{n \to \infty} a_n < \frac{\pi}{11}.$$

 ${\bf F}:$ We have the recursion formula

$$a_{n+6} = \frac{1}{6}a_n + \frac{1}{6}a_{n+1} + \dots + \frac{1}{6}a_{n+5}$$

where we put $a_0 = 1$ and $a_n = 0$ for n < 0. Its generating function is then given by

$$F(x) = \sum_{n=0}^{\infty} a_n x^n = \frac{6}{6 - x - x^2 - \dots - x^6}.$$

We observe that

$$6 - x - x^{2} - \dots - x^{6} = (1 - x)(6 + 5x + 4x^{2} + 3x^{3} + 2x^{4} + x^{5}) = (1 - x)(x - r_{1}) \cdots (x - r_{5})$$

where $|r_1|, \ldots, |r_5| > 1$. Applying partial fraction decomposition gives

$$\frac{6}{6-x-x^2-\cdots-x^6} = \frac{A}{1-x} + \sum_{i=1}^5 \frac{B_i}{x-r_i} = \frac{A}{1-x} - \sum_{i=1}^5 \frac{B_i/r_i}{1-x/r_i}$$

for some constants A, B_1, \ldots, B_5 . Multiplying by $6 - x - x^2 - \cdots - x^6$ and setting x = 1 gives A = 2/7. Hence

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{2}{7} - \sum_{i=1}^5 \frac{B_i}{r_i^{n+1}} \right) = \frac{2}{7}.$$

Finally

$$\frac{2}{7} = \frac{1}{11} \frac{22}{7} = \frac{3.142857\dots}{11} > \frac{\pi}{11}.$$

Note that by working with the recursion formula, one can also show that the limit, if exists, must equal 2/7, which is enough to conclude that the given statement is false.

T/F:

$$\sum_{n=0}^{17} n^{2023} \binom{17}{n} (-1)^n \text{ is divisible by 17!.}$$

T/F:

$$\sum_{n=0}^{17} n^{2023} \binom{17}{n} (-1)^n \text{ is divisible by } 17!.$$

T: Note that

$$\frac{1}{17!} \binom{17}{n} (-1)^n = \frac{(-1)^n}{n!(17-n)!} = \prod_{\substack{m \neq n \\ 0 \le m \le 17}} \frac{1}{m-n}.$$

Consider now

$$f(x) = \sum_{n=0}^{17} n^{2023} \prod_{\substack{m \neq n \\ 0 \le m \le 17}} \frac{m-x}{m-n}.$$

Then f(x) is a polynomial of degree at most 17 with $f(n) = n^{2023}$ for n = 0, ..., 17. Our goal is to show that its x^{17} -coefficient is an integer. In fact, we prove that $f(x) \in \mathbb{Z}[x]$. Applying the division algorithm to x^{2023} by $(x - 0) \cdots (x - 17)$ gives $q(x), r(x) \in \mathbb{Z}[x]$ with deg $r \leq 17$ and

 $x^{2023} = (x - 0) \cdots (x - 17)q(x) + r(x).$

Then $r(n) = n^{2023}$ for n = 0, ..., 17. So r(x) = f(x).

T/F: For any continuous function $g(x) : [-1, 1] \to \mathbb{R}$,

$$\left(\int_{-1}^{1} g(x) \, dx\right)^2 + \left(\int_{-1}^{1} xg(x) \, dx\right)^2 \le 2 \int_{-1}^{1} g(x)^2 \, dx.$$

T/F: For any continuous function $g(x) : [-1, 1] \to \mathbb{R}$,

$$\left(\int_{-1}^{1} g(x) \, dx\right)^2 + \left(\int_{-1}^{1} xg(x) \, dx\right)^2 \le 2 \int_{-1}^{1} g(x)^2 \, dx.$$

T: Note that without the second term on the LHS, this is just Cauchy-Schwartz. So perhaps we should use the more complete version. There is an orthonormal sequence $\{P_n(x)\}_{n=0}^{\infty}$ of polynomials such that $\deg(P_n(x)) = n$ and

$$\int_{-1}^{1} P_n(x) P_m(x) \, dx = \delta_{nm}.$$

More precisely, we have $P_0(x) = \frac{1}{\sqrt{2}}, P_1(x) = \frac{\sqrt{3}}{\sqrt{2}}x.$

Since continuous functions can be approximated by polynomials (in L^{∞}), it is enough to consider polynomials g(x), in which case we can write $g(x) = a_0P_0(x) + \cdots + a_dP_d(x)$ where $d = \deg(g(x))$. Now the desired inequality is

$$2a_0^2 + \frac{2}{3}a_1^2 \le 2(a_0^2 + a_1^2 + \dots + a_d^2)$$

which is clearly true.

 $\mathbf{T/F}$: For any $\epsilon > 0$, there are infinitely many positive integers n such that the largest prime factor of $n^2 + 1$ is at most ϵn .

 \mathbf{T}/\mathbf{F} : For any $\epsilon > 0$, there are infinitely many positive integers n such that the largest prime factor of $n^2 + 1$ is at most ϵn .

T: Let P(x) denote the largest prime divisor of x. The key starting point is the factorization

$$(2m^2)^2 + 1 = (2m^2 - 2m + 1)(2m^2 + 2m + 1).$$

So when n is of the form $2m^2$, $P(n^2+1)$ is already at most around n. To lower it further, we want to find m so that $2m^2 - 2m + 1$ and $2m^2 + 2m + 1$ have large prime divisors.

Lemma: Let $f(x) \in \mathbb{Z}[x]$ be a non-constant polynomial. Then there are infinitely many primes p dividing f(a) for some $a \in \mathbb{Z}$.

Proof: Let $a_0 = f(0)$. If $a_0 = 0$, then $p \mid f(p)$ for all primes p. Suppose $a_0 \neq 0$. Then $f(a_0 n!) = a_0(1 + n!g(n!))$ has a prime divisor p > n for n large enough.

Let ℓ be big enough so that $p_1 = P(2\ell^2 - 2\ell + 1) > 2023/\epsilon$. Then $p_1 \mid 2(\ell + tp_1)^2 - 2(\ell + tp_1) + 1$ for any $t \in \mathbb{Z}$. We can not take t large enough so that for $k = \ell + tp_1$, $q_1 = P(2k^2 - 2k + 1) \ge p_1 > 2023/\epsilon$ and

 $q_2 = P(2k^2 + 2k + 1) > 2023/\epsilon.$ The same is also for any $m = k + sq_1q_2.$ Now $q_2 \mid 2m^2 + 2m + 1$ and so $P(2m^2 + 2m + 1) \le \max\{q_2, \frac{2m^2 + 2m + 1}{q_2}\} < \epsilon(2m^2).$

Similarly for $P(2m^2 - 2m + 1)$.

The more interesting question is of course the conjecture that $n^2 + 1$ is prime infinitely often. The best result currently (2020) is that $P(n^2 + 1) > n^{1.279}$ for infinitely many n.