Bernoulli Trial 2023



1: (2 minutes)

T /F: There is a complex number z with |z| = 1 such that

L2023 4 4y _



1: (2 minutes)

T /F: There is a complex number z with |z| = 1 such that

PPy r1=0.

F: Since 1, 22923 2% all have length 1, they must form an equilateral triangle if they add up to 0. So

{22023 4% = {(3,¢3}. Then z = 220247202 ¢ [1 (3, (2} but then since 2023 = 4 (mod 3), we have 220% = 2%,
Contradiction.

Using the same argument, one can show that if gcd(n,m) = 1, then 2™ + 2" + 1 = 0 has a solution with
|zl =1ifand only if n =1,m =2 (mod 3) or n =2,m =1 (mod 3).



2: (2 minutes)

T/F: The sum of the digits of the sum of the digits of the sum of the digits of 2023%%3 is 7.
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(2 minutes)
T/F: The sum of the digits of the sum of the digits of the sum of the digits of 2023%%3 is 7.

T: Let s(n) denote the sum of the digits of n. Since log;((2023) < 3.5 as v/10 > 3, we see that 202323 has
less than 7100 digits, which means that s(20232%) < 7100 x 9 = 63900. Then s(s(2023%"2%)) < 5(69999) =
42 and s(s(5(202329%%))) < 5(49) = 13. Next we compute 20232° mod 9. Note that 2023 = 7 (mod 9) and
73 =1 (mod 9) and so 202329 = 7! = 7 (mod 9). The only positive integer less than 13 that is congruent
to 7 modulo 9 is 7.

This question is from IMO 1975 P4 where the number was 4444%*444: the exact same analysis applies.



3: (3 minutes)

A cubical number is a positive integer that is equal to the sum of the cubes of its digits.
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(3 minutes)
A cubical number is a positive integer that is equal to the sum of the cubes of its digits.
T /F: There is a unique 3-digit cubical number n such that n 4 1 is also cubical.

T: There are three possibilities:
A+ 4+ (c+1)P° = P+ +E+1,
A+ 0+1324+0 = B+ +9+1,
(a+1P2+0°+0° = a®>+9°+9° +1.
The last two cases are not possible because the difference of two consecutive cubes of single digit numbers

is too small to cover the loss of 9%. The first possibility gives ¢ = 0. So now we have 100a + 10b = a3 + b°.
Checking some small values gives 3% 4+ 73 = 370.

It turns out that 10 | @® + b? if and only if 10 | @ + b. The only cubical numbers are 1,153,370, 371, 407.



4:

(3 minutes)

T/F:

J

> In(2x)
1+ a2

dr <

o]



4: (3 minutes)

T/F:

> In(2
[Thes, s
0 1—}—:62 2

T: Consider the substitution u = 1/z. We have
> In(2 > In(2u~!
[, e,
0 14 5172 0 1+ U2

1
21n2/ der =7In2 < 7.
0 1‘|‘ZC2

Their sum is




5: (3 minutes)

T /F: Every Gaussian integer a + bi with a,b € Z can be written as a finite sum of distinct powers of 1+ i.
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(3 minutes)
T /F: Every Gaussian integer a + bi with a,b € Z can be written as a finite sum of distinct powers of 1 4.

F: The number ¢ cannot be written in this form. First it is easy to see that if a number can be written as
a sum of distinct powers of 1 + ¢, such a representation must be unique, because 1 + ¢ is not a unit. Next
we observe that ¢ —1 = i(1 +¢). This means that if i = ap +a1(1 +14) +--- 4+ a,(1 +14)" with a,, # 0, then

ag+ay(1+i)+-+a,(1+0)"=1+ag(1+4)+ar(l+0)*+-+a,(1+i)"
Hence a,, = 0. Contradiction.

It turns out that exactly one number out of z and ¢ — 2 can be written as a finite sum of distinct powers
of 1 + 1. To prove this, consider the function

(a+bi)/(1+1) ifa=0 (mod 2);

fla+bi) = {(al—l—bi)/(l—i—i) if a b (mod 2).

Then it is easy to see that z can be written if and only if f(z) can be written. It is also not hard to prove
that the sequence 21 = f(2), z,01 = f(z,) is eventually constant, and equals to 0 or ¢. Finally, we have

fli—2) =i—f(2).



6: (3 minutes)
Let n be a positive integer such that n =6 (mod 7).

T /F: The equation

has solutions in x,y, z € N.
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(3 minutes)
Let n be a positive integer such that n =6 (mod 7).

T /F: The equation

has solutions in z,y, z € N.

1 1 1 8
So — 4+ — + — = —. Dividing by
n n

1 7
n E o kn

1
T: Write n + 1 = 7k for some k£ € N. Dividing by kn gives z + o
n

1 1 1 4

2n+2k+%:n

2 gives

Erdos-Straus conjectured that this equation is solvable for all positive integers n > 2. This conjecture is
currently open. For X > 0, let N(X) be the number of positive integers n < X such that this equation is
not solvable. Then by considering more primes, one can prove

NX) <L ——77—-
(X) < (log X )9/4



A useful related result is that the equation a/b = 1/x + 1/y is solvable if there are divisors dy, dy of b such
that a | dy + do. Indeed, let k = (d; 4+ d2)/a and take z = kb/d; and y = kb/ds.



7: (5 minutes)

T /F: There exists a set
AC{(i,j) €Z*:1<i<2023,1<j <2023}

such that for any i, 7 = 1,...,2023, there exist exactly 7 integers k such that (i, k) € A and (k, j) € A.



7.

(5 minutes)

T /F: There exists a set
AC{(i,j) €Z*:1<i<2023,1<j <2023}

such that for any i, 7 = 1,...,2023, there exist exactly 7 integers k such that (i, k) € A and (k, j) € A.

T: Let n = 2023 and m = 7. Since 2023 = 7 x 172, it might help to consider the easier case where n = 172
and m = 1. Let M4 be the n x n matrix whose (i, 7) entry is 1 if (i,j) € A and 0 if otherwise. For any
positive integer d, let J; denote the d x d matrix with 1’s everywhere. We are then looking for a set A
such that M?% = m.J,.

We claim first that if such an A exists for (n,m), then it also exists for (dn,dm) for any positive integer
d. Indeed, simply take the dn x dn matrix M4 such that all of its n x n blocks are M 4. Then it is easy
to see that Mfl, = dmJdy,. Moreover, the entries of My are all 1 and 0, so it comes from a set A’.

It now remains to construct the set A when n = 172 and m = 1. We observe that every integer between 1
and 172 can be written uniquely as 17(q¢ — 1) + r for some ¢,r = 1,...,17. We let

A={(17(¢g—1)+r17(r—1)+d): 1 < q,r,d < 17}.



Then given i = 17(¢y — 1) + 7 and j = 17(g2 — 1) + 79, the unique integer k such that (¢, k), (k,j) € A is
k= 17(7“1 — 1)—|—q2

For which other pairs (n,m) is this possible? The matrix mJ, should have an integral square root. The
eigenvalues of mJ, are 0,...,0, mn. So we need mn to be a square since the trace of M, is an integer.
Since the trace of M, is at most n, we also have m < n. In other words, we need n = dt* and m = ds? for
some coprime integers s,t with s < t. We have already seen that the extra common factor of d is harmless.
Let’s consider n = t? and m = s?>. We use the same idea and write every integer from 1 to t? uniquely
as t(q — 1) +r for some ¢,r = 1,...,t. Then given i = t(q; — 1) +r; and j = t(gz — 1) + 79, to find s°
integers k such that (i, k), (k,j) € A, we ideally want k = t(q3 — 1) + r3 where there are s choices for g3
and s choices for r3. To arrange for this, we let B be any subset of {1,...,t} of size s. Then we take

A={{tlq—1) +nrtld —1)+r):1<qr.¢d, 7" <t, ¢ —r=b (modt) for some b € B}.

Therefore, such a set A exists if and only if mn is a square and m < n.



8: (2 minutes)

T /F: There exists a polynomial f(x) € Z[z|, an integer n > 3, and distinct integers ay, ..., a, such that
fla;)) = ajqg fori=1,...,.n—1

and

f(an) = ax.
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(2 minutes)

T /F: There exists a polynomial f(x) € Z[z|, an integer n > 3, and distinct integers ay, ..., a, such that
fla;)) = ajqg fori=1,...,.n—1

and

f(an) = ax.

F: Standard polynomial division result tells us that
as—ay |ag—as |-+ |ap—an1|a—a,|a—a.

Hence there is a nonzero integer ¢ such that all the above differences equal +c¢. Since they add up to 0,
they can’t all be ¢ or —c¢. So there exists an index ¢ (mod n) such that a; — a;_1 = —(a;+1 — a;), which
then implies a;,.1 = a;_1, contradicting the assumption that they are distinct.



9: (2 minutes)
A Fermat number is a number of the form 22" + 1 for some non-negative integer n.

T /F: Every two distinct Fermat numbers are coprime.



9: (2 minutes)
A Fermat number is a number of the form 22" + 1 for some non-negative integer n.
T /F: Every two distinct Fermat numbers are coprime.

T: Suppose n, k € N and
2n+k

d=ged(2 +1,2°" +1).
Then d | 22" —1 and so d | 22" — 1. This implies d | 2. So d = 1.

Note that if p is a prime divisor of 22" + 1, then 0,(2) | 2" in (Z/pZ)*. Since p t 2% — 1, we see that
0,(2) = 2", So 2"+ | p — 1. In fact, we can also prove that 2" | p — 1. Since p =1 (mod 8), we know
that 2 is a square mod p. Let a € F, such that a®> = 2. Then a2 =2 = 1in 7./ pZ and a2 = on =+ 1.
So o(a) = 2% and it divides p — 1.



10:

(4 minutes)

T/F:




10: (4 minutes)

T/F:

F: The integrand has a maximum of 27! at 1/2 and decreases to 1 when z = 0 and x = 1. This suggests
setting uw =  — 1/2 and then v = 2u to get

n 1 dx _@/1 dv
o o a4+ (1—z)r 2 ), (L+v)"+ (1 —v)

Next we set w = nv to get

1 /” dw
2 ) +w/n)" + (1 —w/n)"
which we expect will converge to

oo

>~ d 1
/ 2 arctan(e")

o€V Fe v 2

1 T
2 4

—00



To make the convergence rigorous, we use Lebesgue Dominated Convergence Theorem.

Then

for n > 2 and

So

X[—n,n] (w)

fn(w) = (1 +w/n)n T (1 — w/n)”

1 - 1
(1 + |w|/n) = (14 |w]/2)?

/OO dw o
oo (14 ] /2)? '

lim oofn(w)dw:/_oo lim fn(UJ)dw:/_OO dw

w —w :

Let



11: (4 minutes)
Let A C Z? be a set such that any open disc of radius 2023 contains at least one point in A.

T /F: For any coloring of the points in A with 11 colors, there exist 4 points in A with the same color and
they form a rectangle.
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(4 minutes)
Let A C Z? be a set such that any open disc of radius 2023 contains at least one point in A.

T /F: For any coloring of the points in A with 11 colors, there exist 4 points in A with the same color and
they form a rectangle.

T: Consider a huge square with side length 4046 L with sides parallel to the coordinate axes. We can divide
it into L? squares of side length 4046 and fit a disc of radius 2023 inside each of it. Hence, this square
contains at least L? points in A. There are 4046L + 1 vertical grid lines in this square. So there exists
a vertical grid line with at least L?/(4046L + 1) points in A. By taking L large enough, say L = 50000,
there is a vertical grid line inside the box with at least 12 points in A, so then at least 2 points in A with
the same color. There are only finitely many possible configurations for 2 lattice points on a vertical line
of length 4046 - 50000 having one of the 11 colors, but there are infinitely many non-overlapping squares
with side length 4046 - 50000 that we can line up horizontally.

Obviously the numbers 2023 and 11 don’t matter.



12: (4 minutes)

A fair die (so that it has 1/6 chance of rolling each 1,2,3,4,5,6) is rolled infinitely. For any positive integer
n, let a, be the probability that a partial sum of n is reached.

T/F:

li n < —
pon S



12: (4 minutes)

A fair die (so that it has 1/6 chance of rolling each 1,2,3,4,5,6) is rolled infinitely. For any positive integer
n, let a, be the probability that a partial sum of n is reached.

T/F:
Ii n < —
anee S 17
F: We have the recursion formula
1
An+6 = éan + éan—i—l + e+ éan+5

where we put ag = 1 and a,, = 0 for n < 0. Its generating function is then given by

F(x) = Z apx’" = 0

6—x—a%2—.- —af

We observe that

6—x—a"— - —2'=(1-2)(6+5r+42” +32° + 22" +2°) = (1 —z)(z —71) -+~ (2 — 73)



where |r],...,|rs| > 1. Applying partial fraction decomposition gives

) )

6 A B; Bi/ri
6—x—x2—---—x6_1—x+izzlx—n _Zl—x/rZ
for some constants A, By, ..., Bs. Multiplying by 6 — 2 — 22> — --- — 2% and setting = 1 gives
Hence .
: : 2 B; 2
tim o=t (2-3°-2) -2
Finally
2 122 3.142857...
7117 11 11

A=2T.

Note that by working with the recursion formula, one can also show that the limit, if exists, must equal

2/7, which is enough to conclude that the given statement is false.



13: (4 minutes)
T/F:

17 17
an( )(—1)“ is divisible by 17!.

n
n=0



13: (4 minutes)

T/F:
17 17
Zn2023( )(—1)" is divisible by 17!.
n=0 n
T: Note that L /17 (1) .
17!<n>( ) n!(17 — n)! n!;[n m—n
0<m<17
Consider now .
_ 2023 m—x
f(x) —n;n Wl;[ —.
0<m<17

Then f(x) is a polynomial of degree at most 17 with f(n) = n?* for n = 0,...,17. Our goal is to show
that its 17-coefficient is an integer. In fact, we prove that f(x) € Z[z]. Applying the division algorithm
to 222 by (z —0) -+ (x — 17) gives q(x),r(z) € Z[x] with degr < 17 and

2?8 = (2 = 0)--- (x — 17)q(z) + r(x).
Then r(n) = n?* for n =0,...,17. So r(z) = f(x).



14:

(4 minutes)

T /F: For any continuous function g(z) : [-1,1] — R,

(Jow) +(/
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(4 minutes)

T /F: For any continuous function g(z) : [-1,1] — R,

(/119(x)dx)2+ (/11339(:6)6133)2 < 2/_119(33)%_

T: Note that without the second term on the LHS, this is just Cauchy-Schwartz. So perhaps we should
use the more complete version. There is an orthonormal sequence {P,(x)}>, of polynomials such that
deg(P,(x)) = n and

/ 1 Po(2)Po() dz = G-

V2

Since continuous functions can be approximated by polynomials (in L*), it is enough to consider poly-
nomials ¢g(z), in which case we can write g(z) = agFPp(x) + - - - + agPy(z) where d = deg(g(z)). Now the
desired inequality is

More precisely, we have Py(x) =

2
2a8+§a%§2(ag—l—a%+-'-+a§)

which is clearly true.



15: (5 minutes)

T/F: For any € > 0, there are infinitely many positive integers n such that the largest prime factor of
n? + 1 is at most en.



15:

(5 minutes)

T /F: For any € > 0, there are infinitely many positive integers n such that the largest prime factor of
n? + 1 is at most en.

T: Let P(x) denote the largest prime divisor of x. The key starting point is the factorization
2m**+ 1= (2m? —2m + 1)(2m* +2m + 1).

So when n is of the form 2m?, P(n?+ 1) is already at most around n. To lower it further, we want to find
m so that 2m? — 2m + 1 and 2m? + 2m + 1 have large prime divisors.

Lemma: Let f(x) € Z[x] be a non-constant polynomial. Then there are infinitely many primes p dividing
f(a) for some a € Z.

Proof: Let ay = f(0). If ay = 0, then p | f(p) for all primes p. Suppose ay # 0. Then f(aon!) =
ag(1 +nlg(n!)) has a prime divisor p > n for n large enough.

Let ¢ be big enough so that p; = P(20> — 20 + 1) > 2023/e. Then p; | 2(€ + tp1)? — 2(¢ + tp1) + 1 for any
t € Z. We can not take t large enough so that for k = ¢ + tp;, ¢ = P(2k* — 2k + 1) > p; > 2023 /¢ and



g2 = P(2k* + 2k + 1) > 2023 /e. The same is also for any m = k + sqiq2. Now ¢ | 2m* + 2m + 1 and so

2om? +2m + 1

P(2m? 4+ 2m + 1) < max{q, } < e(2m?).

q2

Similarly for P(2m? — 2m + 1).

The more interesting question is of course the conjecture that n? + 1 is prime infinitely often. The best
result currently (2020) is that P(n* + 1) > n'?™ for infinitely many n.



