Bernoulli Trial 2023

1: (2 minutes)
\mathbf{T} / \mathbf{F} : There is a complex number z with $|z|=1$ such that

$$
z^{2023}+z^{4}+1=0
$$

1: (2 minutes)
\mathbf{T} / \mathbf{F} : There is a complex number z with $|z|=1$ such that

$$
z^{2023}+z^{4}+1=0
$$

F: Since $1, z^{2023}, z^{4}$ all have length 1 , they must form an equilateral triangle if they add up to 0 . So $\left\{z^{2023}, z^{4}\right\}=\left\{\zeta_{3}, \zeta_{3}^{2}\right\}$. Then $z=z^{2024-2023} \in\left\{1, \zeta_{3}, \zeta_{3}^{2}\right\}$ but then since $2023 \equiv 4(\bmod 3)$, we have $z^{2023}=z^{4}$. Contradiction.

Using the same argument, one can show that if $\operatorname{gcd}(n, m)=1$, then $z^{m}+z^{n}+1=0$ has a solution with $|z|=1$ if and only if $n \equiv 1, m \equiv 2(\bmod 3)$ or $n \equiv 2, m \equiv 1(\bmod 3)$.

2: (2 minutes)
\mathbf{T} / \mathbf{F} : The sum of the digits of the sum of the digits of the sum of the digits of 2023^{2023} is 7 .

2: (2 minutes)
\mathbf{T} / \mathbf{F} : The sum of the digits of the sum of the digits of the sum of the digits of 2023^{2023} is 7 .
T: Let $s(n)$ denote the sum of the digits of n. Since $\log _{10}(2023)<3.5$ as $\sqrt{10}>3$, we see that 2023^{2023} has less than 7100 digits, which means that $s\left(2023^{2023}\right)<7100 \times 9=63900$. Then $s\left(s\left(2023^{2023}\right)\right)<s(69999)=$ 42 and $s\left(s\left(s\left(2023^{2023}\right)\right)\right)<s(49)=13$. Next we compute $2023^{2023} \bmod 9$. Note that $2023 \equiv 7(\bmod 9)$ and $7^{3} \equiv 1(\bmod 9)$ and so $2023^{2023} \equiv 7^{1}=7(\bmod 9)$. The only positive integer less than 13 that is congruent to 7 modulo 9 is 7 .

This question is from IMO 1975 P 4 where the number was 4444^{4444}; the exact same analysis applies.

3: (3 minutes)

A cubical number is a positive integer that is equal to the sum of the cubes of its digits.

3: (3 minutes)

A cubical number is a positive integer that is equal to the sum of the cubes of its digits.
\mathbf{T} / \mathbf{F} : There is a unique 3 -digit cubical number n such that $n+1$ is also cubical.
T: There are three possibilities:

$$
\begin{aligned}
& a^{3}+b^{3}+(c+1)^{3}=a^{3}+b^{3}+c^{3}+1, \\
& a^{3}+(b+1)^{3}+0^{3}=a^{3}+b^{3}+9^{3}+1 \\
& (a+1)^{3}+0^{3}+0^{3}=a^{3}+9^{3}+9^{3}+1
\end{aligned}
$$

The last two cases are not possible because the difference of two consecutive cubes of single digit numbers is too small to cover the loss of 9^{3}. The first possibility gives $c=0$. So now we have $100 a+10 b=a^{3}+b^{3}$. Checking some small values gives $3^{3}+7^{3}=370$.

It turns out that $10 \mid a^{3}+b^{3}$ if and only if $10 \mid a+b$. The only cubical numbers are $1,153,370,371,407$.

4: (3 minutes)

T/F:

$$
\int_{0}^{\infty} \frac{\ln (2 x)}{1+x^{2}} d x<\frac{\pi}{2}
$$

4: (3 minutes)

T/F:

$$
\int_{0}^{\infty} \frac{\ln (2 x)}{1+x^{2}} d x<\frac{\pi}{2}
$$

\mathbf{T} : Consider the substitution $u=1 / x$. We have

$$
\int_{0}^{\infty} \frac{\ln (2 x)}{1+x^{2}} d x=\int_{0}^{\infty} \frac{\ln \left(2 u^{-1}\right)}{1+u^{2}} d u
$$

Their sum is

$$
2 \ln 2 \int_{0}^{\infty} \frac{1}{1+x^{2}} d x=\pi \ln 2<\pi
$$

5: (3 minutes)
\mathbf{T} / \mathbf{F} : Every Gaussian integer $a+b i$ with $a, b \in \mathbb{Z}$ can be written as a finite sum of distinct powers of $1+i$.

5: (3 minutes)
\mathbf{T} / \mathbf{F} : Every Gaussian integer $a+b i$ with $a, b \in \mathbb{Z}$ can be written as a finite sum of distinct powers of $1+i$.
F: The number i cannot be written in this form. First it is easy to see that if a number can be written as a sum of distinct powers of $1+i$, such a representation must be unique, because $1+i$ is not a unit. Next we observe that $i-1=i(1+i)$. This means that if $i=a_{0}+a_{1}(1+i)+\cdots+a_{n}(1+i)^{n}$ with $a_{n} \neq 0$, then

$$
a_{0}+a_{1}(1+i)+\cdots+a_{n}(1+i)^{n}=1+a_{0}(1+i)+a_{1}(1+i)^{2}+\cdots+a_{n}(1+i)^{n+1}
$$

Hence $a_{n}=0$. Contradiction.

It turns out that exactly one number out of z and $i-z$ can be written as a finite sum of distinct powers of $1+i$. To prove this, consider the function

$$
f(a+b i)=\left\{\begin{array}{lll}
(a+b i) /(1+i) & \text { if } a \equiv b & (\bmod 2) \\
(a-1+b i) /(1+i) & \text { if } a \not \equiv b & (\bmod 2)
\end{array}\right.
$$

Then it is easy to see that z can be written if and only if $f(z)$ can be written. It is also not hard to prove that the sequence $z_{1}=f(z), z_{n+1}=f\left(z_{n}\right)$ is eventually constant, and equals to 0 or i. Finally, we have $f(i-z)=i-f(z)$.

6: (3 minutes)

Let n be a positive integer such that $n \equiv 6(\bmod 7)$.
T/F: The equation

$$
\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}
$$

has solutions in $x, y, z \in \mathbb{N}$.

6: (3 minutes)
Let n be a positive integer such that $n \equiv 6(\bmod 7)$.
T/F: The equation

$$
\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}
$$

has solutions in $x, y, z \in \mathbb{N}$.
T: Write $n+1=7 k$ for some $k \in \mathbb{N}$. Dividing by $k n$ gives $\frac{1}{k}+\frac{1}{k n}=\frac{7}{n}$. So $\frac{1}{n}+\frac{1}{k}+\frac{1}{k n}=\frac{8}{n}$. Dividing by 2 gives

$$
\frac{1}{2 n}+\frac{1}{2 k}+\frac{1}{2 k n}=\frac{4}{n}
$$

Erdös-Straus conjectured that this equation is solvable for all positive integers $n \geq 2$. This conjecture is currently open. For $X>0$, let $N(X)$ be the number of positive integers $n<X$ such that this equation is not solvable. Then by considering more primes, one can prove

$$
N(X) \ll_{\epsilon} \frac{X}{(\log X)^{9 / 4-\epsilon}}
$$

A useful related result is that the equation $a / b=1 / x+1 / y$ is solvable if there are divisors d_{1}, d_{2} of b such that $a \mid d_{1}+d_{2}$. Indeed, let $k=\left(d_{1}+d_{2}\right) / a$ and take $x=k b / d_{1}$ and $y=k b / d_{2}$.

7: (5 minutes)
T/F: There exists a set

$$
A \subseteq\left\{(i, j) \in \mathbb{Z}^{2}: 1 \leq i \leq 2023,1 \leq j \leq 2023\right\}
$$

such that for any $i, j=1, \ldots, 2023$, there exist exactly 7 integers k such that $(i, k) \in A$ and $(k, j) \in A$.

7: (5 minutes)
T/F: There exists a set

$$
A \subseteq\left\{(i, j) \in \mathbb{Z}^{2}: 1 \leq i \leq 2023,1 \leq j \leq 2023\right\}
$$

such that for any $i, j=1, \ldots, 2023$, there exist exactly 7 integers k such that $(i, k) \in A$ and $(k, j) \in A$.
T: Let $n=2023$ and $m=7$. Since $2023=7 \times 17^{2}$, it might help to consider the easier case where $n=17^{2}$ and $m=1$. Let M_{A} be the $n \times n$ matrix whose (i, j) entry is 1 if $(i, j) \in A$ and 0 if otherwise. For any positive integer d, let J_{d} denote the $d \times d$ matrix with 1's everywhere. We are then looking for a set A such that $M_{A}^{2}=m J_{n}$.

We claim first that if such an A exists for (n, m), then it also exists for ($d n, d m$) for any positive integer d. Indeed, simply take the $d n \times d n$ matrix $M_{A^{\prime}}$ such that all of its $n \times n$ blocks are M_{A}. Then it is easy to see that $M_{A^{\prime}}^{2}=d m J_{d n}$. Moreover, the entries of $M_{A^{\prime}}$ are all 1 and 0 , so it comes from a set A^{\prime}.

It now remains to construct the set A when $n=17^{2}$ and $m=1$. We observe that every integer between 1 and 17^{2} can be written uniquely as $17(q-1)+r$ for some $q, r=1, \ldots, 17$. We let

$$
A=\{(17(q-1)+r, 17(r-1)+d): 1 \leq q, r, d \leq 17\} .
$$

Then given $i=17\left(q_{1}-1\right)+r_{1}$ and $j=17\left(q_{2}-1\right)+r_{2}$, the unique integer k such that $(i, k),(k, j) \in A$ is $k=17\left(r_{1}-1\right)+q_{2}$.

For which other pairs (n, m) is this possible? The matrix $m J_{n}$ should have an integral square root. The eigenvalues of $m J_{n}$ are $0, \ldots, 0, m n$. So we need $m n$ to be a square since the trace of M_{A} is an integer. Since the trace of M_{A} is at most n, we also have $m \leq n$. In other words, we need $n=d t^{2}$ and $m=d s^{2}$ for some coprime integers s, t with $s \leq t$. We have already seen that the extra common factor of d is harmless. Let's consider $n=t^{2}$ and $m=s^{2}$. We use the same idea and write every integer from 1 to t^{2} uniquely as $t(q-1)+r$ for some $q, r=1, \ldots, t$. Then given $i=t\left(q_{1}-1\right)+r_{1}$ and $j=t\left(q_{2}-1\right)+r_{2}$, to find s^{2} integers k such that $(i, k),(k, j) \in A$, we ideally want $k=t\left(q_{3}-1\right)+r_{3}$ where there are s choices for q_{3} and s choices for r_{3}. To arrange for this, we let B be any subset of $\{1, \ldots, t\}$ of size s. Then we take

$$
A=\left\{\left(t(q-1)+r, t\left(q^{\prime}-1\right)+r^{\prime}\right): 1 \leq q, r, q^{\prime}, r^{\prime} \leq t, \quad q^{\prime}-r \equiv b \quad(\bmod t) \text { for some } b \in B\right\}
$$

Therefore, such a set A exists if and only if $m n$ is a square and $m \leq n$.

8: (2 minutes)
\mathbf{T} / \mathbf{F} : There exists a polynomial $f(x) \in \mathbb{Z}[x]$, an integer $n \geq 3$, and distinct integers a_{1}, \ldots, a_{n} such that

$$
f\left(a_{i}\right)=a_{i+1} \text { for } i=1, \ldots, n-1
$$

and

$$
f\left(a_{n}\right)=a_{1} .
$$

8: (2 minutes)
\mathbf{T} / \mathbf{F} : There exists a polynomial $f(x) \in \mathbb{Z}[x]$, an integer $n \geq 3$, and distinct integers a_{1}, \ldots, a_{n} such that

$$
f\left(a_{i}\right)=a_{i+1} \text { for } i=1, \ldots, n-1
$$

and

$$
f\left(a_{n}\right)=a_{1} .
$$

F: Standard polynomial division result tells us that

$$
a_{2}-a_{1}\left|a_{3}-a_{2}\right| \cdots\left|a_{n}-a_{n-1}\right| a_{1}-a_{n} \mid a_{2}-a_{1} .
$$

Hence there is a nonzero integer c such that all the above differences equal $\pm c$. Since they add up to 0 , they can't all be c or $-c$. So there exists an index $i(\bmod n)$ such that $a_{i}-a_{i-1}=-\left(a_{i+1}-a_{i}\right)$, which then implies $a_{i+1}=a_{i-1}$, contradicting the assumption that they are distinct.

9: (2 minutes)
A Fermat number is a number of the form $2^{2^{n}}+1$ for some non-negative integer n.
T/F: Every two distinct Fermat numbers are coprime.

9: (2 minutes)
A Fermat number is a number of the form $2^{2^{n}}+1$ for some non-negative integer n.
T/F: Every two distinct Fermat numbers are coprime.
\mathbf{T} : Suppose $n, k \in \mathbb{N}$ and

$$
d=\operatorname{gcd}\left(2^{2^{n}}+1,2^{2^{n+k}}+1\right) .
$$

Then $d \mid 2^{2^{n+1}}-1$ and so $d \mid 2^{2^{n+k}}-1$. This implies $d \mid 2$. So $d=1$.
Note that if p is a prime divisor of $2^{2^{n}}+1$, then $o_{p}(2) \mid 2^{n+1} \mathrm{in}(\mathbb{Z} / p \mathbb{Z})^{\times}$. Since $p \nmid 2^{2^{n}}-1$, we see that $o_{p}(2)=2^{n+1}$. So $2^{n+1} \mid p-1$. In fact, we can also prove that $2^{n+2} \mid p-1$. Since $p \equiv 1(\bmod 8)$, we know that 2 is a square $\bmod p$. Let $a \in \mathbb{F}_{p}$ such that $a^{2}=2$. Then $a^{2^{n+2}}=2^{n+1}=1$ in $\mathbb{Z} / p \mathbb{Z}$ and $a^{2^{n+1}}=2^{n} \neq 1$. So $o(a)=2^{n+2}$ and it divides $p-1$.

10: (4 minutes)
T/F:

$$
\lim _{n \rightarrow \infty} \frac{n}{2^{n}} \int_{0}^{1} \frac{d x}{x^{n}+(1-x)^{n}}<\frac{\pi}{4}
$$

10: (4 minutes)

T/F:

$$
\lim _{n \rightarrow \infty} \frac{n}{2^{n}} \int_{0}^{1} \frac{d x}{x^{n}+(1-x)^{n}}<\frac{\pi}{4}
$$

F: The integrand has a maximum of 2^{n-1} at $1 / 2$ and decreases to 1 when $x=0$ and $x=1$. This suggests setting $u=x-1 / 2$ and then $v=2 u$ to get

$$
\frac{n}{2^{n}} \int_{0}^{1} \frac{d x}{x^{n}+(1-x)^{n}}=\frac{n}{2} \int_{-1}^{1} \frac{d v}{(1+v)^{n}+(1-v)^{n}}
$$

Next we set $w=n v$ to get

$$
\frac{1}{2} \int_{-n}^{n} \frac{d w}{(1+w / n)^{n}+(1-w / n)^{n}}
$$

which we expect will converge to

$$
\frac{1}{2} \int_{-\infty}^{\infty} \frac{d w}{e^{w}+e^{-w}}=\left.\frac{1}{2} \arctan \left(e^{w}\right)\right|_{-\infty} ^{\infty}=\frac{\pi}{4}
$$

To make the convergence rigorous, we use Lebesgue Dominated Convergence Theorem. Let

$$
f_{n}(w)=\frac{\chi_{[-n, n]}(w)}{(1+w / n)^{n}+(1-w / n)^{n}} .
$$

Then

$$
f_{n}(w) \leq \frac{1}{(1+|w| / n)^{n}} \leq \frac{1}{(1+|w| / 2)^{2}}
$$

for $n \geq 2$ and

$$
\int_{-\infty}^{\infty} \frac{d w}{(1+|w| / 2)^{2}}<\infty
$$

So

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f_{n}(w) d w=\int_{-\infty}^{\infty} \lim _{n \rightarrow \infty} f_{n}(w) d w=\int_{-\infty}^{\infty} \frac{d w}{e^{w}+e^{-w}}
$$

11: (4 minutes)
Let $A \subseteq \mathbb{Z}^{2}$ be a set such that any open disc of radius 2023 contains at least one point in A.
\mathbf{T} / \mathbf{F} : For any coloring of the points in A with 11 colors, there exist 4 points in A with the same color and they form a rectangle.

11: (4 minutes)
Let $A \subseteq \mathbb{Z}^{2}$ be a set such that any open disc of radius 2023 contains at least one point in A.
T/F: For any coloring of the points in A with 11 colors, there exist 4 points in A with the same color and they form a rectangle.

T: Consider a huge square with side length $4046 L$ with sides parallel to the coordinate axes. We can divide it into L^{2} squares of side length 4046 and fit a disc of radius 2023 inside each of it. Hence, this square contains at least L^{2} points in A. There are $4046 L+1$ vertical grid lines in this square. So there exists a vertical grid line with at least $L^{2} /(4046 L+1)$ points in A. By taking L large enough, say $L=50000$, there is a vertical grid line inside the box with at least 12 points in A, so then at least 2 points in A with the same color. There are only finitely many possible configurations for 2 lattice points on a vertical line of length $4046 \cdot 50000$ having one of the 11 colors, but there are infinitely many non-overlapping squares with side length $4046 \cdot 50000$ that we can line up horizontally.

Obviously the numbers 2023 and 11 don't matter.

12: (4 minutes)

A fair die (so that it has $1 / 6$ chance of rolling each $1,2,3,4,5,6$) is rolled infinitely. For any positive integer n, let a_{n} be the probability that a partial sum of n is reached.

T/F:

$$
\lim _{n \rightarrow \infty} a_{n}<\frac{\pi}{11}
$$

12: (4 minutes)
A fair die (so that it has $1 / 6$ chance of rolling each $1,2,3,4,5,6$) is rolled infinitely. For any positive integer n, let a_{n} be the probability that a partial sum of n is reached.

T/F:

$$
\lim _{n \rightarrow \infty} a_{n}<\frac{\pi}{11}
$$

F: We have the recursion formula

$$
a_{n+6}=\frac{1}{6} a_{n}+\frac{1}{6} a_{n+1}+\cdots+\frac{1}{6} a_{n+5}
$$

where we put $a_{0}=1$ and $a_{n}=0$ for $n<0$. Its generating function is then given by

$$
F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=\frac{6}{6-x-x^{2}-\cdots-x^{6}}
$$

We observe that

$$
6-x-x^{2}-\cdots-x^{6}=(1-x)\left(6+5 x+4 x^{2}+3 x^{3}+2 x^{4}+x^{5}\right)=(1-x)\left(x-r_{1}\right) \cdots\left(x-r_{5}\right)
$$

where $\left|r_{1}\right|, \ldots,\left|r_{5}\right|>1$. Applying partial fraction decomposition gives

$$
\frac{6}{6-x-x^{2}-\cdots-x^{6}}=\frac{A}{1-x}+\sum_{i=1}^{5} \frac{B_{i}}{x-r_{i}}=\frac{A}{1-x}-\sum_{i=1}^{5} \frac{B_{i} / r_{i}}{1-x / r_{i}}
$$

for some constants A, B_{1}, \ldots, B_{5}. Multiplying by $6-x-x^{2}-\cdots-x^{6}$ and setting $x=1$ gives $A=2 / 7$. Hence

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(\frac{2}{7}-\sum_{i=1}^{5} \frac{B_{i}}{r_{i}^{n+1}}\right)=\frac{2}{7}
$$

Finally

$$
\frac{2}{7}=\frac{1}{11} \frac{22}{7}=\frac{3.142857 \ldots}{11}>\frac{\pi}{11} .
$$

Note that by working with the recursion formula, one can also show that the limit, if exists, must equal $2 / 7$, which is enough to conclude that the given statement is false.

13: (4 minutes)

T/F:

$$
\sum_{n=0}^{17} n^{2023}\binom{17}{n}(-1)^{n} \text { is divisible by } 17!
$$

13: (4 minutes)
T/F:

$$
\sum_{n=0}^{17} n^{2023}\binom{17}{n}(-1)^{n} \text { is divisible by } 17!
$$

T: Note that

$$
\frac{1}{17!}\binom{17}{n}(-1)^{n}=\frac{(-1)^{n}}{n!(17-n)!}=\prod_{\substack{m \neq n \\ 0 \leq m \leq 17}} \frac{1}{m-n}
$$

Consider now

$$
f(x)=\sum_{n=0}^{17} n^{2023} \prod_{\substack{m \neq n \\ 0 \leq m \leq 17}} \frac{m-x}{m-n}
$$

Then $f(x)$ is a polynomial of degree at most 17 with $f(n)=n^{2023}$ for $n=0, \ldots, 17$. Our goal is to show that its x^{17}-coefficient is an integer. In fact, we prove that $f(x) \in \mathbb{Z}[x]$. Applying the division algorithm to x^{2023} by $(x-0) \cdots(x-17)$ gives $q(x), r(x) \in \mathbb{Z}[x]$ with $\operatorname{deg} r \leq 17$ and

$$
x^{2023}=(x-0) \cdots(x-17) q(x)+r(x) .
$$

Then $r(n)=n^{2023}$ for $n=0, \ldots, 17$. So $r(x)=f(x)$.

14: (4 minutes)
\mathbf{T} / \mathbf{F} : For any continuous function $g(x):[-1,1] \rightarrow \mathbb{R}$,

$$
\left(\int_{-1}^{1} g(x) d x\right)^{2}+\left(\int_{-1}^{1} x g(x) d x\right)^{2} \leq 2 \int_{-1}^{1} g(x)^{2} d x
$$

14: (4 minutes)
\mathbf{T} / \mathbf{F} : For any continuous function $g(x):[-1,1] \rightarrow \mathbb{R}$,

$$
\left(\int_{-1}^{1} g(x) d x\right)^{2}+\left(\int_{-1}^{1} x g(x) d x\right)^{2} \leq 2 \int_{-1}^{1} g(x)^{2} d x
$$

T: Note that without the second term on the LHS, this is just Cauchy-Schwartz. So perhaps we should use the more complete version. There is an orthonormal sequence $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ of polynomials such that $\operatorname{deg}\left(P_{n}(x)\right)=n$ and

$$
\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=\delta_{n m} .
$$

More precisely, we have $P_{0}(x)=\frac{1}{\sqrt{2}}, P_{1}(x)=\frac{\sqrt{3}}{\sqrt{2}} x$.
Since continuous functions can be approximated by polynomials (in L^{∞}), it is enough to consider polynomials $g(x)$, in which case we can write $g(x)=a_{0} P_{0}(x)+\cdots+a_{d} P_{d}(x)$ where $d=\operatorname{deg}(g(x))$. Now the desired inequality is

$$
2 a_{0}^{2}+\frac{2}{3} a_{1}^{2} \leq 2\left(a_{0}^{2}+a_{1}^{2}+\cdots+a_{d}^{2}\right)
$$

which is clearly true.

15: (5 minutes)
T/F: For any $\epsilon>0$, there are infinitely many positive integers n such that the largest prime factor of $n^{2}+1$ is at most ϵn.

15: (5 minutes)
T/F: For any $\epsilon>0$, there are infinitely many positive integers n such that the largest prime factor of $n^{2}+1$ is at most ϵn.

T: Let $P(x)$ denote the largest prime divisor of x. The key starting point is the factorization

$$
\left(2 m^{2}\right)^{2}+1=\left(2 m^{2}-2 m+1\right)\left(2 m^{2}+2 m+1\right) .
$$

So when n is of the form $2 m^{2}, P\left(n^{2}+1\right)$ is already at most around n. To lower it further, we want to find m so that $2 m^{2}-2 m+1$ and $2 m^{2}+2 m+1$ have large prime divisors.

Lemma: Let $f(x) \in \mathbb{Z}[x]$ be a non-constant polynomial. Then there are infinitely many primes p dividing $f(a)$ for some $a \in \mathbb{Z}$.

Proof: Let $a_{0}=f(0)$. If $a_{0}=0$, then $p \mid f(p)$ for all primes p. Suppose $a_{0} \neq 0$. Then $f\left(a_{0} n!\right)=$ $a_{0}(1+n!g(n!))$ has a prime divisor $p>n$ for n large enough.

Let ℓ be big enough so that $p_{1}=P\left(2 \ell^{2}-2 \ell+1\right)>2023 / \epsilon$. Then $p_{1} \mid 2\left(\ell+t p_{1}\right)^{2}-2\left(\ell+t p_{1}\right)+1$ for any $t \in \mathbb{Z}$. We can not take t large enough so that for $k=\ell+t p_{1}, q_{1}=P\left(2 k^{2}-2 k+1\right) \geq p_{1}>2023 / \epsilon$ and
$q_{2}=P\left(2 k^{2}+2 k+1\right)>2023 / \epsilon$. The same is also for any $m=k+s q_{1} q_{2}$. Now $q_{2} \mid 2 m^{2}+2 m+1$ and so

$$
P\left(2 m^{2}+2 m+1\right) \leq \max \left\{q_{2}, \frac{2 m^{2}+2 m+1}{q_{2}}\right\}<\epsilon\left(2 m^{2}\right) .
$$

Similarly for $P\left(2 m^{2}-2 m+1\right)$.
The more interesting question is of course the conjecture that $n^{2}+1$ is prime infinitely often. The best result currently (2020) is that $P\left(n^{2}+1\right)>n^{1.279}$ for infinitely many n.

