1: (2 minutes) \mathbf{T} / \mathbf{F} : There is a complex number z with $|z|=1$ such that $z^{2023}+z^{4}+1=0$.
2: (2 minutes) \mathbf{T} / \mathbf{F} : The sum of the digits of the sum of the digits of the sum of the digits of 2023^{2023} is 7 .

3: (3 minutes) A cubical number is a positive integer that is equal to the sum of the cubes of its digits. \mathbf{T} / \mathbf{F} : There is a unique 3 -digit cubical number n such that $n+1$ is also cubical.

4: (3 minutes) \mathbf{T} / \mathbf{F} :

$$
\int_{0}^{\infty} \frac{\ln (2 x)}{1+x^{2}} d x<\frac{\pi}{2}
$$

5: (3 minutes) \mathbf{T} / \mathbf{F} : Every Gaussian integer $a+b i$ with $a, b \in \mathbb{Z}$ can be written as a finite sum of distinct powers of $1+i$.

6: (3 minutes) Let n be a positive integer such that $n \equiv 6(\bmod 7)$.
\mathbf{T} / \mathbf{F} : The equation $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ has solutions in $x, y, z \in \mathbb{N}$.
7: (5 minutes) \mathbf{T} / \mathbf{F} : There exists a set

$$
A \subseteq\left\{(i, j) \in \mathbb{Z}^{2}: 1 \leq i \leq 2023,1 \leq j \leq 2023\right\}
$$

such that for any $i, j=1, \ldots, 2023$, there exist exactly 7 integers k such that $(i, k) \in A$ and $(k, j) \in A$.

8: (2 minutes) \mathbf{T} / \mathbf{F} : There exists a polynomial $f(x) \in \mathbb{Z}[x]$, an integer $n \geq 3$, and distinct integers a_{1}, \ldots, a_{n} such that $f\left(a_{i}\right)=a_{i+1}$ for $i=1, \ldots, n-1$ and $f\left(a_{n}\right)=a_{1}$.

9: (2 minutes) A Fermat number is a number of the form $2^{2^{n}}+1$ for some non-negative integer n. T/F: Every two distinct Fermat numbers are coprime.

10: (4 minutes) \mathbf{T} / \mathbf{F} :

$$
\lim _{n \rightarrow \infty} \frac{n}{2^{n}} \int_{0}^{1} \frac{d x}{x^{n}+(1-x)^{n}}<\frac{\pi}{4}
$$

11: (4 minutes) Let $A \subseteq \mathbb{Z}^{2}$ be a set such that any open disc of radius 2023 contains at least one point in A.
T/F: For any coloring of the points in A with 11 colors, there exist 4 points in A with the same color and they form a rectangle.

12: (4 minutes) A fair die (so that it has $1 / 6$ chance of rolling each $1,2,3,4,5,6$) is rolled infinitely. For any positive integer n, let a_{n} be the probability that a partial sum of n is reached.
T/F:

$$
\lim _{n \rightarrow \infty} a_{n}<\frac{\pi}{11}
$$

13: (4 minutes) \mathbf{T} / \mathbf{F} :

$$
\sum_{n=0}^{17} n^{2023}\binom{17}{n}(-1)^{n} \text { is divisible by } 17!
$$

14: (4 minutes) \mathbf{T} / \mathbf{F} : For any continuous function $g(x):[-1,1] \rightarrow \mathbb{R}$,

$$
\left(\int_{-1}^{1} g(x) d x\right)^{2}+\left(\int_{-1}^{1} x g(x) d x\right)^{2} \leq 2 \int_{-1}^{1} g(x)^{2} d x
$$

15: (5 minutes) \mathbf{T} / \mathbf{F} : For any $\epsilon>0$, there are infinitely many positive integers n such that the largest prime factor of $n^{2}+1$ is at most ϵn.

