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Suppose A is a subset of B and C is a subset of D. If A ∪ C = B ∪D and A ∩ C = B ∩D, then A = B

and C = D.

T: Suppose for a contradiction that x ∈ B\A. Then x ∈ B ∪D and so x ∈ C. Moreover, x /∈ A ∩ C, so
x /∈ B ∩D and so x /∈ D. This contradicts C ⊆ D.

If we only have A ∪ C = B ∪D or A ∩ C = B ∩D, then we do not have the same result.
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For any positive integer n, let s(n) denote the sum of digits of 2n. Then there exists a positive integer n
such that s(n) = s(n+ 1).



2: (2 minutes)

For any positive integer n, let s(n) denote the sum of digits of 2n. Then there exists a positive integer n
such that s(n) = s(n+ 1).

F: Note that the sum of the digits of a number is congruent to the same number mod 3. If s(n) = s(n+1),
then 2n+1 ≡ 2n (mod 3), which implies 2 ≡ 1 (mod 3), which is a contradiction.

If we work mod 9, we find s(n) = s(m) implies that n ≡ m (mod 6). In fact, 212 = 4096 and 218 = 262144
have the same sum of digits. Are there infinitely such pairs?
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The set of all composite odd positive integers less than 121 can be written as a union of 3 arithmetic
progressions. (1 is not composite.)



3: (3 minutes)

The set of all composite odd positive integers less than 121 can be written as a union of 3 arithmetic
progressions. (1 is not composite.)

T: A composite odd positive integer is of the form (2r + 1)(2r + 2s + 1). If we fix r and let s vary, then
we obtain an arithmetic progression with initial term (2r+ 1)2 and common difference 2(2r+ 1). We then
obtain three arithmetic progressions with r = 1, 2, 3. Their union contains every composite odd positive
integer that is a multiple of 3 or 5 or 7, which is true for every composite odd positive integer less than
121.

Let pn denote the n-th odd prime. Is it true that N = p2n+1 + 2 is the smallest positive integer such that
the set of all composite odd positive integers less than N cannot be written as a union of n arithmetic
progressions?
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If x < y < z are positive integers such that 4x + 4y + 4z is a square, then z − 2y + x = −1.



4: (4 minutes)

If x < y < z are positive integers such that 4x + 4y + 4z is a square, then z − 2y + x = −1.

T: WLOG, we may assume x = 0. So 1+4y+4z = (1+2m)2 for some integer m, which gives 4y−1 +4z−1 =
m+m2. It now suffices to consider 4a+4b = m(m+1) with 0 ≤ a < b and we aim to prove b = 2a. We first
prove that b ≥ 2a. If a = 0, then it is automatically true. Suppose a > 0. Since m(m+1) = (−m−1)(−m),
we may assume 4a | m. So m = 4ac for some integer c. Now 1 + 4b−a = c(1 + 4ac) and so c = 1 + 4d for
some integer d. Then 4b−a = 4d+ (1 + 4d)24a = 4a + (8d+ 16d2)4a + 4d ≥ 4a. So b ≥ 2a.

Suppose b > 2a for a contradiction. Then if m ≥ 2b, we have m(m + 1) ≥ 4b + 2b > 4b + 4a and if
0 ≤ m ≤ 2b− 1, we have m(m+ 1) ≤ 4b− 2b < 4b + 4a. Therefore, 4b + 4a cannot be written as m(m+ 1).

For which positive integer n does nx + ny = z(z + 1) have nontrivial positive integer solutions? Here a
trivial solution is a solution where y = 2x and z = nx or x = 2y and z = ny. The same argument shows
that when n is a square and has a unique prime divisor, there are no nontrivial solutions. When n = 2,
we have 4 + 8 = 3(4) and 4 + 128 = 11(12). Are there infinitely many solutions when n = 2? What about
n = 3? (3 + 27 = 5(6).)
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For any positive integer n,

#{i ∈ Z : 0 ≤ i ≤ n, 2 -
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is a power of 2.



5: (4 minutes)

For any positive integer n,

#{i ∈ Z : 0 ≤ i ≤ n, 2 -
(
n

i

)
}

is a power of 2.

T: Using the binary expansion of n, we may write n = 2a0 + 2a1 + · · · + 2ak with 0 ≤ a0 < a1 < · · · < ak.
Then working mod 2, we have

(1 + x)n =
k∏
i=0

(1 + x)2
ai

=
k∏
i=0

(1 + x2
ai

) =
∑

S⊂{0,...,k}

x
∑

i∈S 2ai .

From the uniqueness of binary representation, we see that the exponent
∑

i∈S 2ai for different S’s are all
distinct. Hence, there are 2k+1 nonzero terms in (1 + x)n mod 2. These are exactly the odd binomial
coefficients.

Any pattern for the number of binomial coefficients that are divisible by 3?
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There are infinitely many positive integers N with the following property: if 1 < k ≤ N and gcd(k,N) = 1,
then k is a prime.



6: (3 minutes)

There are infinitely many positive integers N with the following property: if 1 < k ≤ N and gcd(k,N) = 1,
then k is a prime.

F: Suppose for a contradiction that the statement is true. Let N be a large enough integer satisfying the
above condition. Let p1 < p2 < · · · < pn be all the primes less than or equal to

√
N . Since p2i ≤ N and p2i

is not a prime, we have gcd(p2i , N) 6= 1 and so pi | N . Hence p1p2 · · · pn | N . We now have a contradiction
because the product of the first n primes grows way faster than the square of the n-th prime.

We can try lowering the bound for k. For example, if f(x) is a function such that f(n!) < n, then by
taking N = n!, then we see that any k ≤ f(N) is less than n is so gcd(k, n!) 6= 1. How big can we take
f(x) so that there are infinitely many positive integers N such that 1 < k ≤ f(N) and gcd(k,N) = 1
implies k is a prime.
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7: (3 minutes)
∞∑

m,n=1
gcd(m,n)=1

1

(mn)2
/∈ Q.

F: ( ∞∑
r=1

1

r2

)2

=
∞∑

m,n=1

1

m2n2
=

∞∑
d=1

∞∑
m,n=1

gcd(m,n)=1

1

(dmdn)2
=

∞∑
d=1

1

d4

∞∑
m,n=1

gcd(m,n)=1

1

(mn)2

Hence
∞∑

m,n=1
gcd(m,n)=1

1

(mn)2
=

(
π2

6

)2(
π4

90

)−1
∈ Q.

Is there a more intuitive reason for this?
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For any positive integer n, there exists a circle in R2 whose interior contains exactly n points in Z2.
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For any positive integer n, there exists a circle in R2 whose interior contains exactly n points in Z2.

T: Let α, β be two irrational numbers such that {1, α, β} is linearly independent over Q. We claim that
any two distinct lattice points (x1, y1) and (x2, y2) must have distinct distance to (α, β). Suppose

(x1 − α)2 + (y1 − β)2 = (x2 − α)2 + (y2 − β)2.

Then
2(x1 − x2)α + 2(y1 − y2)β ∈ Z.

From linear independence, we have x1 = x2 and y1 = y2. Now given any positive integer n. Take a large
enough circle centered at (α, β) so that its interior contains more than n lattice points. Since all the lattice
points have different distances to (α, β), by shrinking the circle, we can remove lattice points one by one
until we are left with n points.

We don’t need such a strong independence assumption. Suppose α /∈ Q and β ∈ Q. Then we have x1 = x2
and (y1 − y2)(y1 + y2 − 2β) = 0. So we just need 2β /∈ Z.



9: (3 minutes)

Let P (x) be a polynomial of degree m and let Q(x) be a polynomial of degree n such that all the coefficients
of P and Q are either 1 or 2022. If P (x) | Q(x) as polynomials, then m+ 1 | n+ 1.



9: (3 minutes)

Let P (x) be a polynomial of degree m and let Q(x) be a polynomial of degree n such that all the coefficients
of P and Q are either 1 or 2022. If P (x) | Q(x) as polynomials, then m+ 1 | n+ 1.

T: Work in R = Z/2021Z. (If you prefer fields, work over F43 or F47.) Then P (x) = (xm+1 − 1)/(x − 1)
and Q(x) = (xn+1 − 1)/(x − 1). Since P (x) | Q(x) in Z[x], we have xm+1 − 1 | xn+1 − 1 in R[x], which is
only possible if m+ 1 | n+ 1.

Note we have
Q(x) = P (x)(1 + xm+1 + x2(m+1) + · · ·+ xn−m) + 2021P (x)h(x)

for some polynomial h(x). If P (x) 6= 1 + x+ · · ·+ xm, does it follow that h(x) = 0?
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The set {1, 2, . . . , 2022} can be colored with two colors such that any 18-term arithmetic progressions
contains both colors.



10: (4 minutes)

The set {1, 2, . . . , 2022} can be colored with two colors such that any 18-term arithmetic progressions
contains both colors.

T: Given any 18-term arithmetic progression, the number of ways to color {1, 2, . . . , 2022} so that the
given progression contains only one color is 22022−17. The total number of 18-term arithmetic progressions
is bounded by

2022−18∑
a=1

2022− a
17

=
1

17

2021∑
a=18

a <
2022× 2021

34
<

2048× 2048

32
= 217.

Hence, the total number of ways to color {1, 2, . . . , 2022} so that some 18-term arithmetic progression
contains only one color is less than the total number 22022 of ways to color {1, 2, . . . , 2022}. Therefore,
there is way to color {1, 2, . . . , 2022} such that any 18-term arithmetic progressions contains both colors.

What is the biggest N such that the set {1, 2, . . . , 2022} can be colored with two colors such that any
N -term arithmetic progressions contains both colors?
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For any increasing sequence {an}∞n=1 of positive integers, there exists a positive integer k such that the
sequence {k + an}∞n=1 contains infinitely many primes.
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For any increasing sequence {an}∞n=1 of positive integers, there exists a positive integer k such that the
sequence {k + an}∞n=1 contains infinitely many primes.

F: Take an = n!. Then for any k ≤ n, k + n! is not a prime.

Can we make this true by limiting the growth rate of an? In other words, suppose A is a subset of N.
Suppose A has positive lower density:

lim inf
n→∞

#A ∩ [1, n]

n
> 0.

Does there exist k such that k + A = {k + a : a ∈ A} contains infinitely many primes?
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12: (4 minutes) ∫ π

0

ln

(
5

4
− cosx

)
dx > e−2022.

F: For any real number u, consider

I(u) =

∫ π

0

ln(1− 2u cosx+ u2) dx.

Then the desired integral is I(1/2). Since cos(π− x) = − cosx, we see that I(u) = I(−u). Next note that

(1− 2u cosx+ u2)(1 + 2u cosx+ u2) = 1 + 2u2 + u4 − 4u2 cos2 x = 1 + u4 − 2u2 cos 2x.

Hence

I(u) + I(−u) =
1

2

∫ 2π

0

ln(1− 2u2 cos θ + u4) dθ =
1

2
(I(u2) + I(−u2)) = I(u2).

This implies that

I(u) =
1

2
I(u2) =

1

4
I(u4) = · · · = 1

2n
I(u2

n

).

Note if 0 ≤ u < 1, then ln(1− 2u cosx + u2) ≤ ln((1 + u)2) < ln 4 and so I(u) < π ln 4. The same is true
for I(u2

n

) and so we have I(u) = 0 for 0 ≤ u < 1.



I(u) =

∫ π

0

ln(1− 2u cosx+ u2) dx, I(u) = I(−u) =
1

2
I(u2).

From I(u) = 1
2I(u2), we get also that I(1) = 0. For u > 1, we have

I(u) = I(1/u) +

∫ π

0

ln(u2) dx = 2π lnu.
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For any integer n > 1, the smallest prime divisor of n is less than the smallest prime divisor of 3n − 2n.



13: (4 minutes)

For any integer n > 1, the smallest prime divisor of n is less than the smallest prime divisor of 3n − 2n.

T: Let p be the smallest prime divisor of 3n−2n. Then p is odd. Let u = (p+1)/2 so that 2u ≡ 1 (mod p).
Hence (3u)n ≡ 1 (mod p). Let m denote the order of 3u in F×p . Then m | gcd(n, p− 1). Since 3u 6≡ 2u, we
have m 6= 1. Hence m has a prime divisor, which also divides n and is less than p.

This also proves the infinitude of primes.
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lim
n→∞

n

2n

n∑
k=1

2k

k
= 2.



14: (4 minutes)

lim
n→∞

n

2n

n∑
k=1

2k

k
= 2.

T: We note
n

2n

n∑
k=1

2k

k
=

n

2n

n−1∑
k=0

2n−k

n− k
=

n−1∑
k=0

1

2k
n

n− k
=

n−1∑
k=0

1

2k
+

n−1∑
k=0

1

2k
k

n− k
.

The first sum tends to 2 as n goes to infinity. So it remains to prove the second sum goes to 0. We use
the following bounds for k/(n − k): for k <

√
n, k/(n − k) < 2/

√
n; for

√
n ≤ k < n/2, k/(n − k) < 1;

and for n/2 ≤ k < n, k/(n− k) < n. Hence, we have

n−1∑
k=0

1

2k
k

n− k
≤
b
√
nc∑

k=0

1

2k
2√
n

+

bn/2c∑
k=b
√
nc+1

1

2k
+

n∑
k=bn/2c+1

1

2k
n� 1√

n
+

1

2
√
n

+
n

2n
→ 0.

Since exponential functions grow much faster than polynomials, we can pretty much ignore the n and the

k and just consider lim
n→∞

1

2n

n∑
k=1

2k, which can be easily seen to be 2.



The same argument as above shows that if P (x) is any polynomial, then

lim
n→∞

P (n)

2n

n∑
k=1

2k

P (k)
= 2.
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Suppose R is a rectangle that can be tiled using rectangles each of which has at least one side of integral
length. Then R also has at least one side of integral length.



15: (4 minutes)

Suppose R is a rectangle that can be tiled using rectangles each of which has at least one side of integral
length. Then R also has at least one side of integral length.

T: We note that for a rectangle D = [a, b]× [c, d], up to a nonzero multiplicative constant, we have∫∫
D

cos(2πx) cos(2πy) dxdy = (sin(2πb)− sin(2πa))(sin(2πd)− sin(2πc)),∫∫
D

cos(2πx) sin(2πy) dxdy = (sin(2πb)− sin(2πa))(cos(2πd)− cos(2πc)),∫∫
D

sin(2πx) cos(2πy) dxdy = (cos(2πb)− cos(2πa))(sin(2πd)− sin(2πc)),∫∫
D

sin(2πx) sin(2πy) dxdy = (cos(2πb)− cos(2πa))(cos(2πd)− cos(2πc)).

It is easy to see that all four integrals are 0 if and only if either b − a ∈ Z or d − c ∈ Z. Since R can be
tiled using rectangles with a side of integral length, the above four integrals over R is 0. Hence, R also has
at least one side of integral length.

We are essentially trying to find a function f(x), not necessarily continuous, such that
∫ b
a f(x) dx = 0 if

and only if b − a ∈ Z. Such a function does not exist if it is real-valued. Indeed, take F (x) =
∫ x
0 f(t) dt.

Then F is continuous and F (0) = F (1) = 0. Suppose F takes a maximum of M > 0 at x = c on [0, 1].



Then there exists a ∈ (0, c) and b ∈ (c, 1) such that F (a) = F (b) = M/2. Then
∫ b
a f(x) dx = 0.

Such a function does exist over C by taking f(x) = e2πix, which is essentially what the solution uses.


