Bernoulli Trial 2022

1: (2 minutes)
Suppose A is a subset of B and C is a subset of D. If $A \cup C=B \cup D$ and $A \cap C=B \cap D$, then $A=B$ and $C=D$.

1: (2 minutes)
Suppose A is a subset of B and C is a subset of D. If $A \cup C=B \cup D$ and $A \cap C=B \cap D$, then $A=B$ and $C=D$.

T: Suppose for a contradiction that $x \in B \backslash A$. Then $x \in B \cup D$ and so $x \in C$. Moreover, $x \notin A \cap C$, so $x \notin B \cap D$ and so $x \notin D$. This contradicts $C \subseteq D$.

If we only have $A \cup C=B \cup D$ or $A \cap C=B \cap D$, then we do not have the same result.

2: (2 minutes)

For any positive integer n, let $s(n)$ denote the sum of digits of 2^{n}. Then there exists a positive integer n such that $s(n)=s(n+1)$.

2: (2 minutes)

For any positive integer n, let $s(n)$ denote the sum of digits of 2^{n}. Then there exists a positive integer n such that $s(n)=s(n+1)$.

F: Note that the sum of the digits of a number is congruent to the same number mod 3. If $s(n)=s(n+1)$, then $2^{n+1} \equiv 2^{n}(\bmod 3)$, which implies $2 \equiv 1(\bmod 3)$, which is a contradiction.

If we work $\bmod 9$, we find $s(n)=s(m)$ implies that $n \equiv m(\bmod 6)$. In fact, $2^{12}=4096$ and $2^{18}=262144$ have the same sum of digits. Are there infinitely such pairs?

3: (3 minutes)

The set of all composite odd positive integers less than 121 can be written as a union of 3 arithmetic progressions. (1 is not composite.)

3: (3 minutes)

The set of all composite odd positive integers less than 121 can be written as a union of 3 arithmetic progressions. (1 is not composite.)

T : A composite odd positive integer is of the form $(2 r+1)(2 r+2 s+1)$. If we fix r and let s vary, then we obtain an arithmetic progression with initial term $(2 r+1)^{2}$ and common difference $2(2 r+1)$. We then obtain three arithmetic progressions with $r=1,2,3$. Their union contains every composite odd positive integer that is a multiple of 3 or 5 or 7 , which is true for every composite odd positive integer less than 121.

Let p_{n} denote the n-th odd prime. Is it true that $N=p_{n+1}^{2}+2$ is the smallest positive integer such that the set of all composite odd positive integers less than N cannot be written as a union of n arithmetic progressions?

4: (4 minutes)

If $x<y<z$ are positive integers such that $4^{x}+4^{y}+4^{z}$ is a square, then $z-2 y+x=-1$.

4: (4 minutes)
If $x<y<z$ are positive integers such that $4^{x}+4^{y}+4^{z}$ is a square, then $z-2 y+x=-1$.
T: WLOG, we may assume $x=0$. So $1+4^{y}+4^{z}=(1+2 m)^{2}$ for some integer m, which gives $4^{y-1}+4^{z-1}=$ $m+m^{2}$. It now suffices to consider $4^{a}+4^{b}=m(m+1)$ with $0 \leq a<b$ and we aim to prove $b=2 a$. We first prove that $b \geq 2 a$. If $a=0$, then it is automatically true. Suppose $a>0$. Since $m(m+1)=(-m-1)(-m)$, we may assume $4^{a} \mid m$. So $m=4^{a} c$ for some integer c. Now $1+4^{b-a}=c\left(1+4^{a} c\right)$ and so $c=1+4 d$ for some integer d. Then $4^{b-a}=4 d+(1+4 d)^{2} 4^{a}=4^{a}+\left(8 d+16 d^{2}\right) 4^{a}+4 d \geq 4^{a}$. So $b \geq 2 a$.
Suppose $b>2 a$ for a contradiction. Then if $m \geq 2^{b}$, we have $m(m+1) \geq 4^{b}+2^{b}>4^{b}+4^{a}$ and if $0 \leq m \leq 2^{b}-1$, we have $m(m+1) \leq 4^{b}-2^{b}<4^{b}+4^{a}$. Therefore, $4^{b}+4^{a}$ cannot be written as $m(m+1)$.

For which positive integer n does $n^{x}+n^{y}=z(z+1)$ have nontrivial positive integer solutions? Here a trivial solution is a solution where $y=2 x$ and $z=n^{x}$ or $x=2 y$ and $z=n^{y}$. The same argument shows that when n is a square and has a unique prime divisor, there are no nontrivial solutions. When $n=2$, we have $4+8=3(4)$ and $4+128=11(12)$. Are there infinitely many solutions when $n=2$? What about $n=3 ?(3+27=5(6)$.)

5: (4 minutes)
For any positive integer n,

$$
\#\left\{i \in \mathbb{Z}: 0 \leq i \leq n, 2 \nmid\binom{n}{i}\right\}
$$

is a power of 2 .

5: (4 minutes)

For any positive integer n,

$$
\#\left\{i \in \mathbb{Z}: 0 \leq i \leq n, 2 \nmid\binom{n}{i}\right\}
$$

is a power of 2 .
T : Using the binary expansion of n, we may write $n=2^{a_{0}}+2^{a_{1}}+\cdots+2^{a_{k}}$ with $0 \leq a_{0}<a_{1}<\cdots<a_{k}$. Then working mod 2 , we have

$$
(1+x)^{n}=\prod_{i=0}^{k}(1+x)^{2^{a_{i}}}=\prod_{i=0}^{k}\left(1+x^{2^{a_{i}}}\right)=\sum_{S \subset\{0, \ldots, k\}} x^{\sum_{i \in S} 2^{a_{i}}} .
$$

From the uniqueness of binary representation, we see that the exponent $\sum_{i \in S} 2^{a_{i}}$ for different S^{\prime} 's are all distinct. Hence, there are 2^{k+1} nonzero terms in $(1+x)^{n} \bmod 2$. These are exactly the odd binomial coefficients.

Any pattern for the number of binomial coefficients that are divisible by 3 ?

6: (3 minutes)
There are infinitely many positive integers N with the following property: if $1<k \leq N$ and $\operatorname{gcd}(k, N)=1$, then k is a prime.

6: (3 minutes)
There are infinitely many positive integers N with the following property: if $1<k \leq N$ and $\operatorname{gcd}(k, N)=1$, then k is a prime.

F: Suppose for a contradiction that the statement is true. Let N be a large enough integer satisfying the above condition. Let $p_{1}<p_{2}<\cdots<p_{n}$ be all the primes less than or equal to \sqrt{N}. Since $p_{i}^{2} \leq N$ and p_{i}^{2} is not a prime, we have $\operatorname{gcd}\left(p_{i}^{2}, N\right) \neq 1$ and so $p_{i} \mid N$. Hence $p_{1} p_{2} \cdots p_{n} \mid N$. We now have a contradiction because the product of the first n primes grows way faster than the square of the n-th prime.

We can try lowering the bound for k. For example, if $f(x)$ is a function such that $f(n!)<n$, then by taking $N=n$!, then we see that any $k \leq f(N)$ is less than n is so $\operatorname{gcd}(k, n!) \neq 1$. How big can we take $f(x)$ so that there are infinitely many positive integers N such that $1<k \leq f(N)$ and $\operatorname{gcd}(k, N)=1$ implies k is a prime.

7: (3 minutes)

$$
\sum_{\substack{m, n=1 \\ \operatorname{gcd}(m, n)=1}}^{\infty} \frac{1}{(m n)^{2}} \notin \mathbb{Q}
$$

7: (3 minutes)

$$
\sum_{\substack{m, n=1 \\ \operatorname{gcd}(m, n)=1}}^{\infty} \frac{1}{(m n)^{2}} \notin \mathbb{Q}
$$

F:

$$
\left(\sum_{r=1}^{\infty} \frac{1}{r^{2}}\right)^{2}=\sum_{m, n=1}^{\infty} \frac{1}{m^{2} n^{2}}=\sum_{d=1}^{\infty} \sum_{\substack{m, n=1 \\ \operatorname{gcd}(m, n)=1}}^{\infty} \frac{1}{(d m d n)^{2}}=\sum_{d=1}^{\infty} \frac{1}{d^{4}} \sum_{\substack{m, n=1 \\ \operatorname{gcd}(m, n)=1}}^{\infty} \frac{1}{(m n)^{2}}
$$

Hence

$$
\sum_{\substack{m, n=1 \\ \operatorname{gcd}(m, n)=1}}^{\infty} \frac{1}{(m n)^{2}}=\left(\frac{\pi^{2}}{6}\right)^{2}\left(\frac{\pi^{4}}{90}\right)^{-1} \in \mathbb{Q}
$$

Is there a more intuitive reason for this?

8: (3 minutes)

For any positive integer n, there exists a circle in \mathbb{R}^{2} whose interior contains exactly n points in \mathbb{Z}^{2}.

8: (3 minutes)
For any positive integer n, there exists a circle in \mathbb{R}^{2} whose interior contains exactly n points in \mathbb{Z}^{2}.
\mathbf{T} : Let α, β be two irrational numbers such that $\{1, \alpha, \beta\}$ is linearly independent over \mathbb{Q}. We claim that any two distinct lattice points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ must have distinct distance to (α, β). Suppose

$$
\left(x_{1}-\alpha\right)^{2}+\left(y_{1}-\beta\right)^{2}=\left(x_{2}-\alpha\right)^{2}+\left(y_{2}-\beta\right)^{2} .
$$

Then

$$
2\left(x_{1}-x_{2}\right) \alpha+2\left(y_{1}-y_{2}\right) \beta \in \mathbb{Z}
$$

From linear independence, we have $x_{1}=x_{2}$ and $y_{1}=y_{2}$. Now given any positive integer n. Take a large enough circle centered at (α, β) so that its interior contains more than n lattice points. Since all the lattice points have different distances to (α, β), by shrinking the circle, we can remove lattice points one by one until we are left with n points.

We don't need such a strong independence assumption. Suppose $\alpha \notin \mathbb{Q}$ and $\beta \in \mathbb{Q}$. Then we have $x_{1}=x_{2}$ and $\left(y_{1}-y_{2}\right)\left(y_{1}+y_{2}-2 \beta\right)=0$. So we just need $2 \beta \notin \mathbb{Z}$.

9: (3 minutes)

Let $P(x)$ be a polynomial of degree m and let $Q(x)$ be a polynomial of degree n such that all the coefficients of P and Q are either 1 or 2022. If $P(x) \mid Q(x)$ as polynomials, then $m+1 \mid n+1$.

9: (3 minutes)

Let $P(x)$ be a polynomial of degree m and let $Q(x)$ be a polynomial of degree n such that all the coefficients of P and Q are either 1 or 2022. If $P(x) \mid Q(x)$ as polynomials, then $m+1 \mid n+1$.

T : Work in $R=\mathbb{Z} / 2021 \mathbb{Z}$. (If you prefer fields, work over \mathbb{F}_{43} or \mathbb{F}_{47}.) Then $P(x)=\left(x^{m+1}-1\right) /(x-1)$ and $Q(x)=\left(x^{n+1}-1\right) /(x-1)$. Since $P(x) \mid Q(x)$ in $\mathbb{Z}[x]$, we have $x^{m+1}-1 \mid x^{n+1}-1$ in $R[x]$, which is only possible if $m+1 \mid n+1$.

Note we have

$$
Q(x)=P(x)\left(1+x^{m+1}+x^{2(m+1)}+\cdots+x^{n-m}\right)+2021 P(x) h(x)
$$

for some polynomial $h(x)$. If $P(x) \neq 1+x+\cdots+x^{m}$, does it follow that $h(x)=0$?

10: (4 minutes)
The set $\{1,2, \ldots, 2022\}$ can be colored with two colors such that any 18 -term arithmetic progressions contains both colors.

10: (4 minutes)

The set $\{1,2, \ldots, 2022\}$ can be colored with two colors such that any 18 -term arithmetic progressions contains both colors.

T: Given any 18 -term arithmetic progression, the number of ways to color $\{1,2, \ldots, 2022\}$ so that the given progression contains only one color is $2^{2022-17}$. The total number of 18 -term arithmetic progressions is bounded by

$$
\sum_{a=1}^{2022-18} \frac{2022-a}{17}=\frac{1}{17} \sum_{a=18}^{2021} a<\frac{2022 \times 2021}{34}<\frac{2048 \times 2048}{32}=2^{17}
$$

Hence, the total number of ways to color $\{1,2, \ldots, 2022\}$ so that some 18 -term arithmetic progression contains only one color is less than the total number 2^{2022} of ways to color $\{1,2, \ldots, 2022\}$. Therefore, there is way to color $\{1,2, \ldots, 2022\}$ such that any 18 -term arithmetic progressions contains both colors.

What is the biggest N such that the set $\{1,2, \ldots, 2022\}$ can be colored with two colors such that any N-term arithmetic progressions contains both colors?

11: (3 minutes)
For any increasing sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of positive integers, there exists a positive integer k such that the sequence $\left\{k+a_{n}\right\}_{n=1}^{\infty}$ contains infinitely many primes.

11: (3 minutes)
For any increasing sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of positive integers, there exists a positive integer k such that the sequence $\left\{k+a_{n}\right\}_{n=1}^{\infty}$ contains infinitely many primes.

F: Take $a_{n}=n$!. Then for any $k \leq n, k+n$! is not a prime.
Can we make this true by limiting the growth rate of a_{n} ? In other words, suppose A is a subset of \mathbb{N}. Suppose A has positive lower density:

$$
\liminf _{n \rightarrow \infty} \frac{\# A \cap[1, n]}{n}>0
$$

Does there exist k such that $k+A=\{k+a: a \in A\}$ contains infinitely many primes?

12: (4 minutes)

$$
\int_{0}^{\pi} \ln \left(\frac{5}{4}-\cos x\right) d x>e^{-2022}
$$

12: (4 minutes)

$$
\int_{0}^{\pi} \ln \left(\frac{5}{4}-\cos x\right) d x>e^{-2022}
$$

F: For any real number u, consider

$$
I(u)=\int_{0}^{\pi} \ln \left(1-2 u \cos x+u^{2}\right) d x
$$

Then the desired integral is $I(1 / 2)$. Since $\cos (\pi-x)=-\cos x$, we see that $I(u)=I(-u)$. Next note that

$$
\left(1-2 u \cos x+u^{2}\right)\left(1+2 u \cos x+u^{2}\right)=1+2 u^{2}+u^{4}-4 u^{2} \cos ^{2} x=1+u^{4}-2 u^{2} \cos 2 x .
$$

Hence

$$
I(u)+I(-u)=\frac{1}{2} \int_{0}^{2 \pi} \ln \left(1-2 u^{2} \cos \theta+u^{4}\right) d \theta=\frac{1}{2}\left(I\left(u^{2}\right)+I\left(-u^{2}\right)\right)=I\left(u^{2}\right) .
$$

This implies that

$$
I(u)=\frac{1}{2} I\left(u^{2}\right)=\frac{1}{4} I\left(u^{4}\right)=\cdots=\frac{1}{2^{n}} I\left(u^{2^{n}}\right) .
$$

Note if $0 \leq u<1$, then $\ln \left(1-2 u \cos x+u^{2}\right) \leq \ln \left((1+u)^{2}\right)<\ln 4$ and so $I(u)<\pi \ln 4$. The same is true for $I\left(u^{2^{n}}\right)$ and so we have $I(u)=0$ for $0 \leq u<1$.

$$
I(u)=\int_{0}^{\pi} \ln \left(1-2 u \cos x+u^{2}\right) d x, \quad I(u)=I(-u)=\frac{1}{2} I\left(u^{2}\right) .
$$

From $I(u)=\frac{1}{2} I\left(u^{2}\right)$, we get also that $I(1)=0$. For $u>1$, we have

$$
I(u)=I(1 / u)+\int_{0}^{\pi} \ln \left(u^{2}\right) d x=2 \pi \ln u .
$$

13: (4 minutes)
For any integer $n>1$, the smallest prime divisor of n is less than the smallest prime divisor of $3^{n}-2^{n}$.

13: (4 minutes)
For any integer $n>1$, the smallest prime divisor of n is less than the smallest prime divisor of $3^{n}-2^{n}$.
T: Let p be the smallest prime divisor of $3^{n}-2^{n}$. Then p is odd. Let $u=(p+1) / 2$ so that $2 u \equiv 1(\bmod p)$. Hence $(3 u)^{n} \equiv 1(\bmod p)$. Let m denote the order of $3 u$ in \mathbb{F}_{p}^{\times}. Then $m \mid \operatorname{gcd}(n, p-1)$. Since $3 u \not \equiv 2 u$, we have $m \neq 1$. Hence m has a prime divisor, which also divides n and is less than p.

This also proves the infinitude of primes.

14: (4 minutes)

$$
\lim _{n \rightarrow \infty} \frac{n}{2^{n}} \sum_{k=1}^{n} \frac{2^{k}}{k}=2 .
$$

14: (4 minutes)

$$
\lim _{n \rightarrow \infty} \frac{n}{2^{n}} \sum_{k=1}^{n} \frac{2^{k}}{k}=2
$$

T: We note

$$
\frac{n}{2^{n}} \sum_{k=1}^{n} \frac{2^{k}}{k}=\frac{n}{2^{n}} \sum_{k=0}^{n-1} \frac{2^{n-k}}{n-k}=\sum_{k=0}^{n-1} \frac{1}{2^{k}} \frac{n}{n-k}=\sum_{k=0}^{n-1} \frac{1}{2^{k}}+\sum_{k=0}^{n-1} \frac{1}{2^{k}} \frac{k}{n-k} .
$$

The first sum tends to 2 as n goes to infinity. So it remains to prove the second sum goes to 0 . We use the following bounds for $k /(n-k)$: for $k<\sqrt{n}, k /(n-k)<2 / \sqrt{n}$; for $\sqrt{n} \leq k<n / 2, k /(n-k)<1$; and for $n / 2 \leq k<n, k /(n-k)<n$. Hence, we have

$$
\sum_{k=0}^{n-1} \frac{1}{2^{k}} \frac{k}{n-k} \leq \sum_{k=0}^{\lfloor\sqrt{n}\rfloor} \frac{1}{2^{k}} \frac{2}{\sqrt{n}}+\sum_{k=\lfloor\sqrt{n}\rfloor+1}^{\lfloor n / 2\rfloor} \frac{1}{2^{k}}+\sum_{k=\lfloor n / 2\rfloor+1}^{n} \frac{1}{2^{k}} n \ll \frac{1}{\sqrt{n}}+\frac{1}{2^{\sqrt{n}}}+\frac{n}{2^{n}} \rightarrow 0
$$

Since exponential functions grow much faster than polynomials, we can pretty much ignore the n and the k and just consider $\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \sum_{k=1}^{n} 2^{k}$, which can be easily seen to be 2 .

The same argument as above shows that if $P(x)$ is any polynomial, then

$$
\lim _{n \rightarrow \infty} \frac{P(n)}{2^{n}} \sum_{k=1}^{n} \frac{2^{k}}{P(k)}=2 .
$$

15: (4 minutes)

Suppose R is a rectangle that can be tiled using rectangles each of which has at least one side of integral length. Then R also has at least one side of integral length.

15: (4 minutes)
Suppose R is a rectangle that can be tiled using rectangles each of which has at least one side of integral length. Then R also has at least one side of integral length.

T: We note that for a rectangle $D=[a, b] \times[c, d]$, up to a nonzero multiplicative constant, we have

$$
\begin{aligned}
\iint_{D} \cos (2 \pi x) \cos (2 \pi y) d x d y & =(\sin (2 \pi b)-\sin (2 \pi a))(\sin (2 \pi d)-\sin (2 \pi c)), \\
\iint_{D} \cos (2 \pi x) \sin (2 \pi y) d x d y & =(\sin (2 \pi b)-\sin (2 \pi a))(\cos (2 \pi d)-\cos (2 \pi c)), \\
\iint_{D} \sin (2 \pi x) \cos (2 \pi y) d x d y= & (\cos (2 \pi b)-\cos (2 \pi a))(\sin (2 \pi d)-\sin (2 \pi c)), \\
\iint_{D} \sin (2 \pi x) \sin (2 \pi y) d x d y & =(\cos (2 \pi b)-\cos (2 \pi a))(\cos (2 \pi d)-\cos (2 \pi c)) .
\end{aligned}
$$

It is easy to see that all four integrals are 0 if and only if either $b-a \in \mathbb{Z}$ or $d-c \in \mathbb{Z}$. Since R can be tiled using rectangles with a side of integral length, the above four integrals over R is 0 . Hence, R also has at least one side of integral length.

We are essentially trying to find a function $f(x)$, not necessarily continuous, such that $\int_{a}^{b} f(x) d x=0$ if and only if $b-a \in \mathbb{Z}$. Such a function does not exist if it is real-valued. Indeed, take $F(x)=\int_{0}^{x} f(t) d t$. Then F is continuous and $F(0)=F(1)=0$. Suppose F takes a maximum of $M>0$ at $x=c$ on $[0,1]$.

Then there exists $a \in(0, c)$ and $b \in(c, 1)$ such that $F(a)=F(b)=M / 2$. Then $\int_{a}^{b} f(x) d x=0$.
Such a function does exist over \mathbb{C} by taking $f(x)=e^{2 \pi i x}$, which is essentially what the solution uses.

