Bernoulli Trial 2022

1: (2 minutes)
Suppose A is a subset of B and C is a subset of D. If $A \cup C=B \cup D$ and $A \cap C=B \cap D$, then $A=B$ and $C=D$.

2: (2 minutes)

For any positive integer n, let $s(n)$ denote the sum of digits of 2^{n}. Then there exists a positive integer n such that $s(n)=s(n+1)$.

3: (3 minutes)
The set of all composite odd positive integers less than 121 can be written as a union of 3 arithmetic progressions. (1 is not composite.)

4: (4 minutes)
If $x<y<z$ are positive integers such that $4^{x}+4^{y}+4^{z}$ is a square, then $z-2 y+x=-1$.

5: (4 minutes)
For any positive integer n, then

$$
\#\left\{i \in \mathbb{Z}: 0 \leq i \leq n, 2 \nmid\binom{n}{i}\right\}
$$

is a power of 2 .

6: (3 minutes)

There are infinitely many positive integers N with the following property: if $1<k \leq N$ and $\operatorname{gcd}(k, N)=1$, then k is a prime.

7: (3 minutes)

$$
\sum_{\substack{m, n=1 \\ \operatorname{gcd}(m, n)=1}}^{\infty} \frac{1}{(m n)^{2}} \notin \mathbb{Q}
$$

8: (3 minutes)
For any positive integer n, there exists a circle in \mathbb{R}^{2} whose interior contains exactly n points in \mathbb{Z}^{2}.

9: (3 minutes)

Let $P(x)$ be a polynomial of degree m and let $Q(x)$ be a polynomial of degree n such that all the coefficients of P and Q are either 1 or 2022. If $P(x) \mid Q(x)$ as polynomials, then $m+1 \mid n+1$.

10: (4 minutes)

The set $\{1,2, \ldots, 2022\}$ can be colored with two colors such that any 18-term arithmetic progressions contains both colors.

11: (4 minutes)
For any increasing sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of positive integers, there exists a positive integer k such that the sequence $\left\{k+a_{n}\right\}_{n=1}^{\infty}$ contains infinitely many primes.

12: (4 minutes)

$$
\int_{0}^{\pi} \ln \left(\frac{5}{4}-\cos x\right) d x>e^{-2022}
$$

13: (4 minutes)
For any integer $n>1$, the smallest prime divisor of n is less than the smallest prime divisor of $3^{n}-2^{n}$.

14: (4 minutes)

$$
\lim _{n \rightarrow \infty} \frac{n}{2^{n}} \sum_{k=1}^{n} \frac{2^{k}}{k}=2
$$

15: (4 minutes)
Suppose R is a rectangle that can be tiled using rectangles each of which has at least one side of integral length. Then R also has at least one side of integral length.

