Bernoulli Trials Problems for 2019

- **1:** For every function $f: \mathbf{N} \to \mathbf{N}$ with $0 \le f(n) \le n$ for all $n \in \mathbf{N}$, the graph of f contains an infinite set of colinear points.
- 2: For $n = \prod_{i=1}^{l} p_i^{k_i}$ where $l \in \mathbf{Z}^+$, each $k_i \in \mathbf{Z}^+$ and p_i are distinct primes, let $f(n) = \sum_{i=1}^{l} k_i p_i$. Then $\sum_{n=2}^{\infty} \frac{1}{f(n)}$ converges.
- **3:** For all integers $n \geq 3$, if $\varphi(n) = \varphi(n-1) + \varphi(n-2)$ then n is prime.
- **4:** For every integer $n \geq 2$ there exists a nonzero $n \times n$ matrix A with entries in **Z** such that if we interchange any two rows in the matrix A then the resulting matrix B is skew-symmetric, that is $B^T = -B$.
- **5:** There exists a sequence $\{a_n\}_{n\geq 1}$ where each $a_n\in \mathbf{R}^2$ with $a_n\to 0$ such that the open discs $D(a_n,\frac{1}{n})$ are disjoint.
- **6:** The closed unit square in \mathbb{R}^2 is equal to the union of a collection of disjoint sets each of which is homeomorphic to the open interval (0,1).
- 7: There is a unique positive integer n such that there exists a connected planar graph G with n vertices each of which has degree 5.
- 8: For all $n, l \in \mathbf{Z}^+$, there exists a map $f : \mathbf{Z}_{n^l} \to \mathbf{Z}_n$ such that every sequence of length l in \mathbf{Z}_n is of the form $f(k+1), f(k+2), \dots, f(k+l)$ for some $k \in \mathbf{Z}_{n^l}$.
- **9:** There exists an uncountable set S of subsets of **Z** with the property that for all $A, B \in S$ with $A \neq B$ the set $A \cap B$ is finite.
- **10:** There exists a sequence of sets A_1, A_2, A_3, \cdots where each A_n is an n-element set of positive real numbers with $\prod_{a \in A_n} a = 1$ such that $\lim_{n \to \infty} \left(\frac{1}{n} \sum_{a \in A_n} a \right) = 1$.
- **11:** For every sequence $\{a_n\}_{n\geq 1}$ in \mathbf{R} , if $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n a_k=b\in\mathbf{R}$ and $\lim_{n\to\infty}\frac{1}{\log n}\sum_{k=1}^n\frac{a_k}{k}=c\in\mathbf{R}$ then b=c.
- 12: $\int_0^\infty \ln^2\left(\frac{x}{x+3}\right) dx \ge 10.$
- **13:** $1 + 6\cos\frac{2\pi}{7} \ge 2\sqrt{7}\cos\left(\frac{1}{3}\arctan 3\sqrt{3}\right)$.
- **14:** There exists a continuous function $f:[0,1]\to \mathbf{R}$ which crosses the x-axis at uncountably many points, where we say that f crosses the x-axis at a when f(a)=0 and for all $\delta>0$ there exist $x,y\in(a-\delta,a+\delta)$ with f(x)<0 and f(y)>0.
- **15:** For $n \in \mathbf{Z}^+$ and $x \in \mathbf{R}$, define $f_n : \mathbf{R} \to [0,1)$ by $f_n(x) = nx \lfloor nx \rfloor$. Then for some a < b, the sequence of functions $\{f_n : [a,b] \to \mathbf{R}\}$ has a convergent subsequence.