Bernoulli Trials Problems for 2018

- 1: There exists a positive integer k such that 2^k ends with the digits 2018 in its decimal representation.
- 2: There exists a positive integer n which is a multiple of 2018 such that the sum of the digits of n is equal to 2018.
- 3: There exist infinitely many positive integers n such that (2018n)! is a multiple of n! + 1.
- **4:** When n=2018, there exists a permutation σ of the set $\{1,2,\cdots,3n-1,3n\}$ with the property that $\sigma(3k)=\sigma(3k-1)+\sigma(3k-2)$ for all $k\in\{1,2,\cdots,n\}$.
- **5:** For all positive integers a and b with gcd(a,b) = 1, there exist infinitely many positive integers k such that a + kb is a Fibonacci number.
- **6:** For a polynomial of the form $f(x) = \sum_{k=0}^{20} c_k x^k$ with each $c_k \in \mathbf{Z}$ and $c_0 = 20$ and $c_{20} = 3$, the largest possible number of distinct rational roots of f(x) is equal to 6.
- 7: There exists a bijective function from the Euclidean plane to the open unit disc which sends lines in the plane to chords in the disc.
- 8: For every bounded function $f: \mathbf{R} \to \mathbf{R}$, if $f(x) + f\left(x + \frac{5}{6}\right) = f\left(x + \frac{1}{3}\right) + f\left(x + \frac{1}{2}\right)$ for all $x \in \mathbf{R}$ then f is periodic.
- **9:** For all functions $u, v : \mathbf{R} \to \mathbf{R}$, if the function f(x) = u(v(x)) is continuous then the function u(-v(x)) is continuous.
- **10:** There exists a bounded C^{∞} function $f: \mathbf{R} \to \mathbf{R}$ such that $\lim_{n \to \infty} f^{(n)}(0) = \infty$.
- **11:** For every increasing function $f:(0,1)\to(0,1)$ with f(x)>x for all $x\in(0,1)$, there exists a continuous function $g:(0,1)\to(0,1)$ which is not increasing and has the property that g(x)< g(f(x)) for all $x\in(0,1)$.
- **12:** There exists a 4×4 real-valued matrix A such that $A^4 = \begin{pmatrix} -1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -2 & -2 \\ 0 & 0 & 0 & -2 \end{pmatrix}$.
- 13: There exists a 2×2 integer-valued matrix A such that the entries of A^2 are prime numbers and the determinant of A is the square of a prime number.
- **14:** There exists a decreasing sequence of positive real numbers $\{a_n\}$ such that $\sum_{n=1}^{\infty} a_n$ diverges and $\sum_{n=1}^{\infty} n! a_{n!}$ converges.
- **15:** There exists a sequence of complex numbers $\{a_n\}$ with the property that for all positive integers p, the sum $\sum_{n=1}^{\infty} a_n^p$ converges if and only if p is a prime number.