Solutions to the Bernoulli Trials Problems for 2016

1: There are exactly 10! seconds in 6 weeks.

Solution: This is TRUE. The number of seconds in 6 weeks is $6 \cdot 7 \cdot 24 \cdot 60 \cdot 60 = 6 \cdot 7 \cdot 8 \cdot 3 \cdot 10 \cdot 3 \cdot 2 \cdot 5 \cdot 4 \cdot 3 = 10!$.

2: The product of any three consecutive integers, the middle of which is a perfect cube, is a multiple of 504.

Solution: This is TRUE. Let the middle of the three integers be x^3 so their product is $(x^3-1)(x^3)(x^3+1)=x^3(x^6-1)$. By Fermat's Little Theorem, when $x \neq 0 \mod 7$ we have $x^6=1 \mod 7$, and so for all x we have $x^3(x^6-1)=0 \mod 7$. By the Euler-Fermat Theorem, when $x \neq 0 \mod 9$ we have $x^6=1 \mod 9$ and so for all x we have $x^3(x^6-1)=0 \mod 9$. When x is even we have $x^3=0 \mod 8$ and when x is odd we have $x^2=1 \mod 8$ hence $x^6=1 \mod 8$, and so for all x we have $x^3(x^6-1)=0 \mod 8$. Since $x^3(x^6-1)=0 \mod 7$, 8 and 9, we have $x^3(x^6)=0 \mod 504$ by the Chinese Remainder Theorem.

3: The number 6 is the only squarefree perfect number.

Solution: This is TRUE. Let n be squarefree and perfect. Say $n = p_1 p_2 \cdots p_l$ where the p_i are distinct primes. Note that l > 1 since no prime is perfect, and we have If n was odd then since $\sigma(n) = \prod_{i=1}^{l} (p_i + 1)$ with l > 1 we would have $4|\sigma(n)$ hence 4|2n so that 2|n. Thus n is even. Since n is an even perfect number, we have $n = 2^{p-1}M_p$ for some Mersenne prime $M_p = 2^p - 1$. Since $n = 2^{p-1}M_p$ is squarefree, we must have p = 2 and so $n = 2 \cdot M_2 = 2 \cdot 3 = 6$.

4: The only positive integer solution to the equation $x^2 + 7 = y^3$ is (x, y) = (1, 2).

Solution: This is FALSE. For example (x, y) = (181, 32) is a solution.

5: For all nonzero rational numbers a and b, if $c = \frac{ab}{a+b}$ then $\sqrt{a^2 + b^2 + c^2}$ is rational.

Solution: This is TRUE. Indeed $(a+b-c)^2 = \left((a+b) - \frac{ab}{a+b}\right)^2 = (a+b)^2 - 2ab + c^2 = a^2 + b^2 + c^2$.

6: $\tan^2 \frac{\pi}{7} + \tan^2 \frac{2\pi}{7} + \tan^2 \frac{3\pi}{7} \le 20.$

Solution: This is FALSE. In fact the sum is equal to 21. Recall that

$$\cos 7\theta + i \sin 7\theta = (\cos \theta + i \sin \theta)^{7}$$

$$= \left(\binom{7}{0} \cos^{7} \theta - \binom{7}{2} \cos^{5} \theta \sin^{2} \theta + \cdots \right) + i \left(\binom{7}{1} \cos^{6} \theta \sin \theta - \binom{7}{3} \cos^{4} \theta \sin^{3} \theta + \cdots \right)$$

so we have

$$\sin \theta \sin 7\theta = \binom{7}{1} \cos^6 \theta \sin^2 \theta - \binom{7}{3} \cos^4 \theta \sin^4 \theta + \binom{7}{5} \cos^2 \theta \sin^6 \theta - \binom{7}{7} \sin^8 \theta$$
$$= \cos^8 \theta \left(\binom{7}{1} \tan^2 \theta - \binom{7}{3} \tan^4 \theta + \binom{7}{5} \tan^6 \theta - \binom{7}{7} \tan^8 \theta \right)$$
$$= \cos^8 \theta \left(7 - 35 \tan^2 \theta + 21 \tan^4 \theta - \tan^6 \theta \right).$$

When $k \in \{1,2,3\}$ and $\theta = \frac{k\pi}{7}$, we have $\sin 7\theta = 0$ and $\cos \theta \neq 0$, so the above formula shows that $\tan^2 \theta$ is a root of he polynomial $f(x) = x^3 - 21x^2 + 35x - 7$. Thus the three numbers $\alpha = \tan^2 \frac{\pi}{7}$, $\beta = \tan^2 \frac{2\pi}{7}$ and $\gamma = \tan^2 \frac{3\pi}{7}$ are the three distinct roots of f(x) and so we have $\alpha + \beta + \gamma = 21$ (and also $\alpha\beta\gamma = 7$).

We remark that, more generally, a similar argument shows that

$$\sum_{i=1}^{n} \tan^2 \frac{k\pi}{2n+1} = \binom{2n+1}{2} = 2n^2 + n \text{ and } \prod_{k=1}^{n} \tan^2 \frac{k\pi}{2n+1} = 2n+1.$$

7: $\sqrt{e} < \pi^2/6$.

Solution: This is FALSE. Indeed

$$\pi^2 < (3.142)^2 = 9.872164 < 9.88$$
 and

$$6e^{1/2} > 6\left(1 + \frac{1}{2} + \frac{1}{2!}\left(\frac{1}{2}\right)^2 + \frac{1}{3!}\left(\frac{1}{2}\right)^3 + \frac{1}{4!}\left(\frac{1}{2}\right)^4\right) = 6 + 3 + \frac{3}{4} + \frac{1}{8} + \frac{1}{64} = 9.890625 > 9.89.$$

8: For every positive integer n and every matrix $A \in M_n(\mathbf{C})$ which is not a constant multiple of the identity matrix, the vector space $U = \{X \in M_n(\mathbf{C}) | AX = XA\}$ is spanned by the set $\{I, A, A^2, A^3, \cdots\}$.

Solution: This is FALSE. For example, if A is the 3×3 matrix with a 1 in the top left corner and all other entries equal to 0, then U is the space of block-diagonal matrices with a 1×1 block in the upper left and a 2×2 block in the lower right, so $\dim(U) = 5$, but $\operatorname{Span}\{I, A, A^2, \dots\} = \operatorname{Span}\{I, A\}$ which is 2-dimensional.

9: Two players, A and B, take turns, beginning with A, filling in the entries of a 25×25 matrix with real numbers. Player A wins if the final matrix is not invertible and player B wins if it is invertible. In this game, player B has a winning strategy.

Solution: This is FALSE. It is player A that has a winning strategy as follows. Player A begins by placing any entry in column 13, the centre column (leaving an even number of entries in that column). Each time B places an entry in the centre column, A does the same. Each time player B places an entry x in column $k \neq 13$, A places the entry x in column 26 - k. The final matrix is symmetric about the centre column.

10: There exists a bijective map $f: \mathbf{Z}^+ \to \mathbf{Z}^+$ such that $\sum_{n=1}^{\infty} \frac{f(n)}{n^2}$ converges.

Solution: This is FALSE. Let $f: \mathbf{Z}^+ \to \mathbf{Z}^+$ be bijective. Given $m \in \mathbf{Z}^+$, we have

$$\sum_{n=m+1}^{3m} f(n) \ge 1 + 2 + \dots + 2m = m(2m+1) > 2m^2$$

and so

$$\sum_{n=m+1}^{3m} \frac{f(n)}{n^2} \ge \sum_{n=m+1}^{3m} \frac{f(n)}{(3m)^2} = \frac{1}{9m^2} \sum_{n=m+1}^{3m} f(n) > \frac{2m^2}{9m^2} = \frac{2}{9}.$$

11: There exists a bijective map $f: \mathbf{Z}^+ \to \mathbf{Z}^+$ such that $\sum_{n=1}^{\infty} \frac{1}{n f(n)}$ diverges.

Solution: This is FALSE. Note that if j < k but f(j) > f(k) then we have

$$\left(\frac{1}{jf(k)} + \frac{1}{kf(j)}\right) - \left(\frac{1}{jf(j)} + \frac{1}{kf(k)}\right) = \left(\frac{1}{j} - \frac{1}{k}\right) \left(\frac{1}{f(k)} - \frac{1}{f(j)}\right) > 0$$

and hence

$$\frac{1}{1 \cdot f(1)} + \frac{1}{2 \cdot f(2)} + \dots + \frac{1}{j \cdot f(j)} + \dots + \frac{1}{k \cdot f(k)} + \dots + \frac{1}{n \cdot f(n)} < \frac{1}{1 \cdot f(1)} + \frac{1}{2 \cdot f(2)} + \dots + \frac{1}{k \cdot f(k)} + \dots + \frac{1}{j \cdot f(j)} + \dots + \frac{1}{n \cdot f(n)} = \frac{1}{n \cdot f(n)} + \frac{1}{n \cdot f(n)} + \frac{1}{n \cdot f(n)} + \dots + \frac{1}{n \cdot f$$

It follows that, for $l \in \mathbf{Z}^+$, if $\{f(1), f(2), \dots, f(l)\} = \{a_1, a_2, \dots, a_l\}$ with $a_1 < a_2 < \dots < a_l$ then

$$S_l = \sum_{n=1}^l \frac{1}{n f(n)} = \frac{1}{1 \cdot f(1)} + \frac{1}{2 \cdot f(2)} + \dots + \frac{1}{l \cdot f(l)} \le \frac{1}{1 \cdot a_1} + \frac{1}{2 \cdot a_2} + \dots + \frac{1}{l \cdot a_l} \le \frac{1}{1 \cdot 1} + \frac{1}{2 \cdot 2} + \dots + \frac{1}{l \cdot l} = \sum_{n=1}^l \frac{1}{n^2}.$$

Since the sum $\sum \frac{1}{n^2}$ converges, the sequence S_l is bounded above by $\sum_{n=1}^{\infty} \frac{1}{n^2}$, and so it converges.

12: $\int_0^{\pi/2} \tan x |\ln(\sin x)| dx > \frac{\pi}{8}$.

Solution: This is TRUE. Note first that, for any positive integer m, we have

$$\int_0^1 t^m \ln t \ dt = \left[\frac{1}{m+1} t^{m+1} \ln t \right]_0^1 - \int_0^1 \frac{1}{m+1} t^m \ dt = 0 - \left[\frac{1}{(m+1)^2} t^{m+1} \right]_0^1 = -\frac{1}{(m+1)^2}.$$

Let $u = \sin x$ so that $du = \cos x \, dx$. Then using the fact that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ we have

$$\int_0^{\pi/2} \tan x \left| \ln(\sin x) \right| dx = -\int_{x=0}^{\pi/2} \tan x \ln(\sin x) dx = -\int_{u=0}^1 \frac{u \ln u}{1 - u^2} du = -\int_0^1 \sum_{k=0}^\infty u^{2k+1} \ln u du$$

$$= \sum_{k=0}^\infty -\int_0^1 u^{2k+1} \ln u du = \sum_{k=0}^\infty \frac{1}{(2k+2)^2} = \frac{1}{4} \sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{24} > \frac{3\pi}{24} = \frac{\pi}{8}.$$

13: The function $f: \mathbf{R} \to \mathbf{R}$ given by f(0) = 0 and $f(x) = \sin \frac{1}{x}$ for $x \neq 0$ has an antiderivative.

Solution: This is TRUE. Indeed if we let F(0) = 0 and $F(x) = x^2 \cos \frac{1}{x} - \int_0^x 2t \cos \frac{1}{t} dt$ for $x \neq 0$ then it is fairly easy to check that F'(x) = f(x) for all x.

14: Let $f_1(x) = x$ and $f_{n+1}(x) = x^{f_n(x)}$ for $n \ge 1$. Then the function $g(x) = \lim_{n \to \infty} \frac{1}{f(x)}$ is continuous for x > 1.

Solution: This is FALSE. We claim that g(x) is discontinuous at $e^{1/e}$. First note that for x>1 the sequence $1/f_n(x)$ is positive and decreasing with n so g(x) is well-defined. We claim that $g(e^{1/e})\geq 1/e$. Note that $f_1(e^{1/e})=e^{1/e}\leq e$. Let $n\in \mathbf{Z}^+$ and suppose, inductively, that $f_n(e^{1/e})\leq e$. Then $f_{n+1}(e^{1/e})=(e^{1/e})^{f_n(e^{1/e})}\leq (e^{1/e})^e=e$. It follows, by induction, that $f_n(e^{1/e})\leq e$ for all $n\geq 1$, and hence $g(e^{1/e})\geq 1/e$. To prove that g(x) is discontinuous at $e^{1/e}$, we shall show that g(x)=0 for all $x>e^{1/e}$. Let $x>e^{1/e}$.

To prove that g(x) is discontinuous at $e^{1/e}$, we shall show that g(x) = 0 for all $x > e^{1/e}$. Let $x > e^{1/e}$. Note that since the sequence $\{f_n(x)\}$ is increasing, either it converges to some finite number a, in which case $g(x) = \frac{1}{a} > 0$, or it diverges to infinity, in which case g(x) = 0. Suppose, for a contradiction, that the sequence $\{f_n(x)\}$ converges to a finite number, say $\lim_{n\to\infty} f_n(x) = a$. Note that since the sequence increases with $f_1(x) = x > 1$ we must have a > 1. We have

$$a = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} f_{n+1}(x) = \lim_{n \to \infty} x^{f_n(x)} = x^{\lim_{n \to \infty} f_n(x)} = x^a.$$

hence $x=a^{1/a}$. For the function $y(t)=t^{1/t}$ we have $\frac{dy}{dt}/y=(1-\ln t)/t^2$, so that y(t) attains its maximum when t=e. It follows that $x=a^{1/a}\leq e^{1/e}$, which gives the desired contradiction.

15: In the symmetric group S_5 , the identity element is equal to the composite of the 10 distinct transpositions, listed in some order.

Solution: This is TRUE. For example, e = (45)(34)(35)(23)(14)(24)(13)(25)(12)(15).

16: There exists a function $f : \mathbf{R} \to \mathbf{R}$ such that f is differentiable in a dense set $A \subseteq \mathbf{R}$ and f is discontinuous in a dense set $B \subseteq \mathbf{R}$.

Solution: This is TRUE. For example, we can define f(x)=0 whenever x is not of the form $x=\frac{k}{2^n}$ where $n\in\mathbf{Z}^+$ and k is an odd integer, and define $f(\frac{k}{2^n})=\frac{1}{4^n}$ where $n\in\mathbf{Z}^+$ and k is an odd integer. Then f is discontinuous at every point of the form $\frac{k}{2^n}$ with $n\in\mathbf{Z}^+$ and k odd, and f is differentiable with derivative zero at every point of the form $\frac{l}{3^m}$ with $m\in\mathbf{Z}^+$ and $\gcd(l,3)=1$ (and also at some other points) because to have $\frac{k}{2^n}\to\frac{l}{3^m}$ we must have $n\to\infty$ since $\left|\frac{k}{2^n}-\frac{l}{3^m}\right|\geq \frac{1}{2^n3^m}$ and because

$$\left| \frac{f\left(\frac{k}{2^n}\right) - f\left(\frac{l}{3^m}\right)}{\frac{k}{2^n} - \frac{l}{3^m}} \right| = \frac{\frac{1}{4^n}}{\left|\frac{k}{2^n} - \frac{l}{3^m}\right|} \le \frac{\frac{1}{4^n}}{\frac{1}{2^n 3^m}} = \frac{3^m}{2^n} \to 0 \text{ as } n \to \infty.$$

17: The set of rational numbers is equal to the disjoint union of countably many sets, each of which is dense in the set of real numbers.

Solution: This is TRUE. Here is one example. Let $b_1 < b_2 < b_3 < \cdots$ be the sequence of positive integers which are not perfect powers (so for example, $b_1 = 2$, $b_2 = 3$ and $b_3 = 5$). Let $S_1 = \left\{\frac{a}{2^k} \middle| k \in \mathbf{Z}^+, a \in \mathbf{Z}\right\}$ and for $n \geq 2$ let $S_n = \left\{\frac{a}{b_n^k}\middle| k \in \mathbf{Z}^+, a \in \mathbf{Z}, \gcd(a, b_n) = 1\right\}$. Notice that every rational number lies in one of the sets S_n (with \mathbf{Z} being contained in S_1) and that the sets S_n are disjoint. Also, each set S_n is dense in \mathbf{R} because every closed interval of length $\frac{1}{b_n^k}$ contains a number in S_n of the form $\frac{cb_n+1}{b_n^{k+1}}$.

18: Ann and Bob each flip a coin 10 times. The probability that Ann and Bob flip the same number of heads as each other is greater than $\frac{1}{6}$.

Solution: This is TRUE. The probabilty that Ann and Bob flip the same number of heads is

$$P = \sum_{k=0}^{10} \left(\frac{\binom{10}{k}}{2^{10}}\right)^2 = \frac{1}{2^{20}} \sum_{k=0}^{10} \binom{10}{k}^2 = \frac{1}{2^{20}} \binom{20}{10} = \frac{1}{2^{20}} \frac{20 \cdot 19 \cdot 18 \cdots 11}{10 \cdot 9 \cdot 8 \cdots 1} = \frac{19 \cdot 17 \cdot 13 \cdot 11}{2^{18}}$$

and so we have

$$P > \frac{1}{6} \iff 19 \cdot 17 \cdot 13 \cdot 11 \cdot 3 > 2^{17} \iff 19 \cdot 13 \cdot (16+1) \cdot (32+1) > 2^{17}$$

$$\iff 247(16 \cdot 32 + 49) > 2^{17} \iff 247 \cdot 512 + 247 \cdot 49 > 256 \cdot 512$$

$$\iff 247 \cdot 49 > 9 \cdot 512$$

and this is clearly true since $247 \cdot 49 > 200 \cdot 40 = 8000$ while $9 \cdot 512 < 10 \cdot 600 = 6000$.