Solutions to the Bernoulli Trials Problems for 2013

Solution: This is TRUE. If you got this one wrong, then you should review your notes from Grade 1.

2: There exist $a, b \in \mathbf{Q}$ such hat $a^b \in \mathbf{Q}$ but $b^a \notin \mathbf{Q}$.

Solution: This is TRUE. For example we can take $a = \frac{1}{2}$ and b = 2.

3: It is possible to partition \mathbf{Q}^+ into two non-empty disjoint sets which are each closed under addition.

Solution: This is FALSE. Suppose $\mathbf{Q}^+ = A \cup B$ where A and B are non-empty and closed under addition. Say $\frac{a}{b} \in A$ and $\frac{c}{d} \in B$ where $a, b, c, d \in \mathbf{Z}^+$. Then $ac = bc \cdot \frac{a}{b} \in A$ and $ac = ad \cdot \frac{c}{d} \in B$ and so $A \cap B \neq \emptyset$.

4: For all positive integers a, b and n, if a|n and b|n and ab < n then $\gcd\left(\frac{n}{a}, \frac{n}{b}\right) > 1$.

Solution: This is TRUE. Suppose that a|n, b|n, and $\gcd\left(\frac{n}{a}, \frac{n}{b}\right) = 1$. Choose integers x and y so that $\frac{n}{a}x + \frac{n}{b}y = 1$. Multiply by ab to get n(x+y) = ab. Since a, b, n > 0 this implies x+y > 0, so $x+y \ge 1$, and so $ab = n(x+y) \ge n$.

5: For all continuous functions $f: \mathbf{R} \to \mathbf{R}$, if for every $0 \neq c \in \mathbf{R}$ the graph of y = cf(x) is congruent to the graph of y = f(x), then f(x) = ax + b for some $a, b \in \mathbf{R}$. (Two sets are congruent when they are related by an isometry, that is a composite of translations, rotations and reflections).

Solution: This is FALSE. For example the function $f(x) = e^x$ has this property.

6: For $n \in \mathbb{Z}^+$, let a_n be the number of congruence classes of triangles with integer sides and perimeter n. Then for every odd integer $n \in \mathbb{Z}^+$ we have $a_n = a_{n+3}$.

Solution: This is TRUE. Note that $a_n = |A_n|$ where A_n is the set of ordered triples (a, b, c) with $a \le b \le c$, a+b>c and a+b+c=n. For all $n \in \mathbf{Z}^+$, the map $\phi:A_n\to A_{n+3}$ given by $\phi(a,b,c)=(a+1,b+1,c+1)$ is clearly injective. Note that if $(1,b,c)\in A_m$ then since $b\le c$ and 1+b>c we have b=c, and so m=1+b+c=1+2b, which is odd. Thus when n is odd, so that n+3 is even, there are no ordered triples of the form (1,b,c) in A_{n+3} , and so the map ϕ is bijective with inverse given by $\phi^{-1}(a,b,c)=(a-1,b-1,c-1)$.

7: There exists a continuous map $f:[0,1] \to [0,\pi]$ such that f restricts to a bijection $f: \mathbf{Q} \cap [0,1) \to \mathbf{Q} \cap [0,\pi)$. Solution: This is TRUE. Let $a_n = 1 - \frac{1}{2^n}$ so that we have $0 = a_0 < a_1 < a_2 < \cdots$ with $\lim_{a_n} = 1$, and choose a sequence of rational numbers $\{b_n\}$ with $0 = b_0 < b_1 < \cdots$ such that $\lim_{n \to \infty} b_n = \pi$. Then define $f:[0,1] \to [0,\pi]$ by

$$f(x) = b_n + \frac{b_n - b_{n-1}}{a_n - a_{n-1}} (x - a_n)$$
 for $a_{n-1} \le x \le a_n$.

8: There exists a twice-differentiable function $f: \mathbf{R} \to \mathbf{R}$ with $f''(0) \neq 0$ with the property that f'(x) = f(x+1) - f(x) for all $x \in \mathbf{R}$.

Solution: This is TRUE. We look for a solution y=f(x) to the differential equation f'(x)=f(x+1)-f(x) of the form $f(x)=e^{rx}$. When $f(x)=e^{rx}$ we have $f'(x)=re^{rx}$ and $f(x+1)-f(x)=e^{rx+r}-e^{rx}=e^{rx}(e^r+1)$, so in order for $f(x)=e^{rx}$ to be a solution, we need $r=e^r-1$. There is clearly no real solution, so we consider r=s+it with $s,t\in\mathbf{R}$. Then $f(x)=e^{rx}$ is a solution when $r=e^r-1$, that is when $s+it=e^se^{it}-1$, or equivalently when $s=e^s\cos t-1$ (1) and $t=e^s\sin t$ (2). From equation (2) we have $e^s=\frac{t}{\sin t}$ so $s=\ln(t)-\ln(\sin t)$. We put this into equation (1) to get $\ln t-\ln(\sin t)=\frac{t}{\sin t}\cos t-1$, or equivalently g(t)=0 where $g(t)=(\ln t-\ln(\sin t)+1)\sin t-t\cos t$. Since $\lim_{t\to 2\pi^+}g(t)=2\pi$ and $\lim_{t\to 3\pi^-}g(t)=3\pi$, it follows from the Intermediate Value Theorem that we can choose $t\in(2\pi,3\pi)$ so that g(t)=0. We then choose $s=\ln(t)-\ln(\sin t)$ so that equations (1) and (2) hold. Then $f(x)=e^rx=e^{(s+it)x}$ is a complex solution to the differential equation. The real and imaginary parts of f, that is the functions $g(t)=e^{sx}\cos(tx)$ and $g(t)=e^{sx}\sin(tx)$, are both real solution to the differential equation.

9: For all $n \in \mathbf{Z}^+$ and for all $n \times n$ matrices A and B, we have $e^{A+B} = e^A e^B$. (For an $n \times n$ matrix X, $e^X = I + X + \frac{1}{2!} X^2 + \frac{1}{3!} X^3 + \cdots$).

Solution: This is FALSE. For example, let $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Note that $A = A^2 = A^3 = \cdots$ and $A = A^3 = A^3 = A^3 = A^3 = \cdots$ and $A = A^3 = A^3$

$$e^A = \begin{pmatrix} e & 0 \\ 0 & 1 \end{pmatrix} \ , \ e^B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \ \text{ and } \ e^A e^B = \begin{pmatrix} e & e \\ 0 & 1 \end{pmatrix} \, .$$

On the other hand, let $C = A + B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$. Note that for $u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $v = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ we have Cu = u and Cv = 0. For P = (u, v), we have CP = (u, 0) = PA so $C = PAP^{-1}$. Thus

$$e^{A+B}=e^C=e^{PAP^{-1}}=Pe^AP^{-1}=\begin{pmatrix}1&-1\\0&1\end{pmatrix}\begin{pmatrix}e&0\\0&1\end{pmatrix}\begin{pmatrix}1&1\\0&1\end{pmatrix}=\begin{pmatrix}e&e-1\\0&1\end{pmatrix}\,.$$

10: There exists a 3×3 matrix A over \mathbb{Z}_2 with $A \neq I$ and $A^7 = I$.

Solution: This is TRUE. For such a matrix A, the minimal polynomial of A is of degree at most 3 and divides the polynomial $x^7 - 1 = (x - 1)(x^6 + x^5 + \dots + 1) = (x + 1)(x^3 + x + 1)(x^3 + x^2 + 1)$. We can take A to be the companion matrix of the polynomial $x^3 + x + 1$, that is

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} .$$

11: The series $\sum_{n=2}^{\infty} \frac{1}{n^{1+1/\sqrt{\ln n}}}$ converges.

Solution: This is TRUE. Indeed we have $n^{1+1/\sqrt{\ln n}} = n \cdot n^{1/\sqrt{\ln n}} = n \cdot e^{\ln n/\sqrt{\ln n}} = n \cdot e^{\sqrt{\ln n}}$, and so $\sum_{n=2}^{\infty} \frac{1}{n^{1+1/\sqrt{\ln n}}} = \sum_{n=2}^{\infty} \frac{1}{n \cdot e^{\sqrt{\ln n}}}$, which converges by the Integral Test since, letting $u = \sqrt{\ln x}$ so that $u^2 = \ln x$ and $2u \, du = \frac{1}{2} \, dx$, we have

$$\int_{1}^{\infty} \frac{dx}{x \, e^{\sqrt{\ln x}}} = \int_{u=0}^{\infty} 2u \, e^{-u} \, du = \left[-2(u+1)e^{-u} \right]_{0}^{\infty} = 2 \, .$$

12: The series $\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \frac{1}{k^2 + l^2}$ converges.

Solution: This is FALSE. We have

$$\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \frac{1}{k^2 + l^2} \ge \int_{x=1}^{\infty} \int_{y=1}^{\infty} \frac{1}{x^2 + y^2} \, dy \, dx = \int_{x=0}^{\infty} \left[\frac{1}{x} \tan^{-1} \frac{y}{x} \right]_{1}^{\infty} \, dx = \int_{x=1}^{\infty} \frac{1}{x} \left(\frac{\pi}{2} - \tan^{-1} \frac{1}{x} \right) \, dx = \infty$$

because $\int_1^\infty \frac{1}{x} \cdot \frac{\pi}{2} dx = \infty$ while, since $\tan^{-1} u \le u$ for all u > 0, we have $\int_1^\infty \frac{1}{x} \cdot \tan^{-1} \frac{1}{x} dx \le \int_1^\infty \frac{1}{x^2} dx = 1$.

13: The sequence $\frac{1}{(\ln n)^2} \sum_{k=1}^n (\sqrt[k]{k} - 1)$ converges as $n \to \infty$.

Solution: This is TRUE, and the limit is equal to $\frac{1}{2}$. We can see this somewhat informally as follows. We have $\sqrt[k]{k} - 1 = k^{1/k} - 1 = e^{\ln k/k} - 1 = \frac{\ln k}{k} + \frac{1}{2!} \left(\frac{\ln k}{k}\right)^2 + \frac{1}{3!} \left(\frac{\ln k}{k}\right)^3 + \dots \sim \frac{\ln k}{k}$ and so

$$\sum_{k=1}^{n} \left(\sqrt[k]{k} - 1 \right) \sim \sum_{k=1}^{n} \frac{\ln k}{k} \sim \int_{1}^{n} \frac{\ln x}{x} \, dx = \frac{1}{2} (\ln n)^{2} \, .$$

We can make this rigorous as follows. For $u=\frac{\ln x}{x}$ with $x\geq 1$ we have $u'=\frac{1-\ln x}{x^2}$, so u attains its maximum at x=e and we have $u\leq \frac{1}{e}<\ln 2$ for all $x\geq 1$. By Taylor's Theorem, since $0\leq u\leq \ln 2$ we have $0\leq \frac{e^0}{2}u^2\leq e^u-(1+u)\leq \frac{e^{\ln 2}}{2}u^2=u^2$ and so $u\leq e^u-1\leq u+u^2$. Thus we have

$$\begin{split} \frac{\ln x}{x} & \leq e^{\ln x/x} - 1 \leq \frac{\ln x}{x} + \left(\frac{\ln x}{x}\right)^2 \\ \sum_{k=1}^n \frac{\ln k}{k} & \leq \sum_{k=1}^n \left(\sqrt[k]{k} - 1\right) \leq \sum_{k=1}^n \left(\frac{\ln k}{k} + \frac{(\ln k)^2}{k^2}\right) \\ a + \int_1^n \frac{\ln x}{x} \, dx \leq \sum_{k=1}^n \left(\sqrt[k]{k} - 1\right) \leq b + \int_1^n \frac{\ln x}{x} - \frac{(\ln x)^2}{x^2} \, dx \\ a + \left[\frac{1}{2}(\ln x)^2\right]_1^n & \leq \sum_{k=1}^n \left(\sqrt[k]{k} - 1\right) \leq b + \left[\frac{1}{2}(\ln x)^2 - \frac{(\ln x)^2}{x} - \frac{2\ln x}{x} - \frac{2}{x}\right]_1^n \\ a + \frac{1}{2}(\ln n)^2 \leq \sum_{k=1}^n \left(\sqrt[k]{k} - 1\right) \leq b + \frac{1}{2}(\ln n)^2 - \frac{(\ln n)^2}{n} - \frac{2\ln n}{n} - \frac{2}{n} + 2 \, . \end{split}$$

Divide all three terms by $(\ln n)^2$ then use the Squeeze Theorem to see that $\lim_{n\to\infty} \frac{1}{(\ln n)^2} \sum_{k=1}^n (\sqrt[k]{k} - 1) = \frac{1}{2}$.

14: The series $\sum_{n=2}^{\infty} \sum_{k=1}^{n-1} \left(\frac{k}{n}\right)^{kn}$ converges.

Solution: This is TRUE. We claim that $\left(\frac{k}{n}\right)^k \leq \frac{1}{2}$ for all such k,n. Let $f(x) = \left(\frac{x}{n}\right)^x = e^{x\ln(x/n)}$ for $1 \leq x \leq n-1$. Then $f'(x) = e^{x\ln(x/n)} \left(\ln\frac{x}{n}+1\right)$ so we have f'(x) < 0 for $x < \frac{n}{e}$ and f'(x) > 0 for $x < \frac{n}{e}$. Thus f attains its minimum at $x = \frac{n}{e}$ and it attains its maximum at one of the two endpoints. We have $f(1) = \frac{1}{n}$ and $f(n-1) = \left(\frac{n-1}{n}\right)^{n-1}$. Since $n \geq 2$ we have $f(1) = \frac{1}{n} \leq \frac{1}{2}$. To prove our claim, we shall show that $\left(\frac{n-1}{n}\right)^{n-1}$ decreases from $\frac{1}{2}$ for $n \geq 2$ (in fact it decreases towards $\frac{1}{e}$ as $n \to \infty$). Let

$$g(x) = \left(\frac{x-1}{x}\right)^{x-1} = \left(1 - \frac{1}{x}\right)^{x-1} = e^{(x-1)\ln\left(1 - \frac{1}{x}\right)}$$

for x > 1. Then we have

$$g'(x) = e^{(x-1)\ln\left(1 - \frac{1}{x}\right)} \left(\ln\left(1 - \frac{1}{x}\right) + (x-1) \cdot \frac{\frac{1}{x^2}}{1 - \frac{1}{x}}\right) = \left(\frac{x-1}{x}\right)^{x-1} \left(\ln\left(1 - \frac{1}{x}\right) + \frac{1}{x}\right) < 0$$

for all x > 1 because $\ln(1-u) + u < 0$ for all u < 1. Thus $\left(\frac{n-1}{n}\right)^{n-1}$ decreases from $\frac{1}{2}$ for $n \ge 2$, and hence we have proven our claim that $\left(\frac{k}{n}\right)^k \le \frac{1}{2}$ for all $n \ge 2$ and $1 \le k \le n-1$. It follows that

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^{kn} = \sum_{k=1}^{n} \left(\left(\frac{k}{n}\right)^{k}\right)^{n} \le \sum_{k=1}^{n} \left(\frac{1}{2}\right)^{n} = \frac{n}{2^{n}}.$$

We know that $\sum \frac{n}{2^n}$ converges, and so the given sum converges by comparison.

15: Euclidean space can be partitioned into a disjoint union of pairwise skew lines.

Solution: This is TRUE. For each r > 0 and $\theta \in [0, 2\pi)$, let $L_{r,\theta}$ be the line given by

$$(x, y, z) = (r \cos \theta, r \sin \theta, 0) + t(-r \sin \theta, r \cos \theta, 1).$$

The lines $L_{r,\theta}$ together with the y-axis form such a partition. Indeed, for fixed r > 0, when the line $L_{r,0}$ is revolved about the z-axis, it sweeps out the hyperboloid H_r given by $x^2 + y^2 - r^2z^2 = r^2$, so the hyperboloid H_r is partitioned by the lines $L_{r,\theta}$, and Euclidean space is partitioned by these hyperboloids H_r together with the z-axis.