Solutions to the Bernoulli Trials Problems for 2012

1: There exists a positive integer n such that $n^3 + (n+1)^3 = (n+2)^3$.

Solution: This is FALSE. Replace n by x-1 and let $f(x)=(x-1)^3+x^3-(x+1)^3=x^3-6x^2-2$. The only possible rational roots of f are $x=\pm 1,\pm 2$ but f(-2)=-34, f(-1)=-9, f(1)=-7 and f(2)=-16 so f has no rational roots.

2: There exists a positive integer n such that neither n nor n^2 uses the digit 1 in its base 3 representation.

Solution: This is FALSE. Indeed if n does not use the digit 1 in its base 3 representation, then its base 3 representation ends with $200 \cdots 0$ (say with $0 \le k$ zeros) and so the base 3 representation of n^2 ends with $100 \cdots 0$ (with 2k + 1 zeros).

3: For every positive integer n, n is prime if and only if there exist unique positive integers a and b such that $\frac{1}{n} = \frac{1}{a} - \frac{1}{b}$.

Solution: This is TRUE. For any positive integer n, we have $\frac{1}{n} = \frac{1}{n-1} - \frac{1}{n(n-1)}$ so we can take a = n-1 and b = n(n-1). When n = kl with k, l > 1, we also have $\frac{1}{n} = \frac{1}{k(l-1)} - \frac{1}{k(l-1)}$, so in this case a and b are not uniquely determined. Suppose n is prime. To get $\frac{1}{n} = \frac{1}{a} - \frac{1}{b} = \frac{b-a}{ab}$ we need n(b-a) = ab. Since n is prime, we have n|a or n|b. If we had n|a with say a = kn then we would have n(b-a) = ab = knb so that b-a = nb, but this is not possible since b-a < b while $nb \ge b$. Thus $n \not|a$ and hence n|b, say b = ln. We have $n(b-a) = ab = aln \Longrightarrow b-a = al \Longrightarrow b = (l+1)a \Longrightarrow ln = (l+1)a$. Since n is prime and $n \not|a$ we have n|(l+1), and since $\gcd(l,l+1) = 1$ we have l|a. Say (l+1) = sn and a = tl. Then ln = (l+1)a = stln so s = t = 1 and we have l+1 = n and a = l = n-1. Thus in the case that n is prime, the values of a and hence b are uniquely determined.

4:
$$\sqrt{1+\sqrt{7+\sqrt{1+\sqrt{7+\cdots}}}}$$
 is rational.

Solution: This is TRUE. Let $l = \sqrt{1 + \sqrt{7 + \sqrt{1 + \sqrt{7 + \cdots}}}}$, assuming that this expression

is well defined. Then we have $l^2=1+\sqrt{7+\sqrt{1+\sqrt{7+\cdots}}}$, hence $l^4-2l^2+1=7+l$, that is l^4-2l^2-l-6 . Thus l is a root of $f(x)=x^4-2x^2-x-6$. The only possible rational roots of f are $x=\pm 1,\pm 2,\pm 3,\pm 6$. We try some of these and find that f(2)=0, then long division gives f(x)=(x-2)g(x) where $g(x)=(x^3+2x^2+2x+3)$. We have $g'(x)=3x^2+4x+2$, which has negative discriminant, so g'(x)>0 for all x. Thus g is increasing with g(0)=3, so g has 1 real root which is negative. Since 2 is the only positive real root of f, it follows that l=2 (assuming that l is well-defined).

We will not bother to verify that l is well-defined. We remark that one way to define the number l rigorously is to define a sequence $\{a_n\}$ by $a_1 = 1$ and $a_{n+1} = \sqrt{1 + \sqrt{7 + a_n}}$ for $n \ge 1$, then verify that $\{a_n\}$ converges and let $l = \lim_{n \to \infty} a_n$.

5: $\sin(20^{\circ})\sin(40^{\circ})\sin(60^{\circ})\sin(80^{\circ})$ is rational.

Solution: This is TRUE. We use the identities $\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$ and $\sin \alpha \sin \beta = \frac{1}{2} (\sin(\alpha + \beta) + \sin(\alpha - \beta))$ and the fact that $\sin(100^\circ) = \cos(10^\circ) = \sin(80^\circ)$ to get

$$\begin{split} \sin(20^\circ)\sin(40^\circ)\sin(60^\circ)\sin(80^\circ) &= \tfrac{1}{2}\big(\cos(20^\circ) - \cos(60^\circ)\big)\tfrac{\sqrt{3}}{2}\sin(80^\circ) \\ &= \tfrac{\sqrt{3}}{4}\cos(20^\circ)\sin(80^\circ) - \tfrac{\sqrt{3}}{8}\sin(80^\circ) \\ &= \tfrac{\sqrt{3}}{8}\big(\sin(100^\circ) + \sin(60^\circ)\big) - \tfrac{\sqrt{3}}{8}\sin(80^\circ) \\ &= \tfrac{\sqrt{3}}{8}\sin(100^\circ) + \tfrac{3}{16} - \tfrac{\sqrt{3}}{8}\sin(80^\circ) \\ &= \tfrac{3}{16} \,. \end{split}$$

6: $\left(\frac{e}{2}\right)^{\sqrt{3}} < \left(\sqrt{2}\right)^{\pi/2}$.

Solution: This is TRUE. We have $\left(\frac{e}{2}\right)^{\sqrt{3}} < \left(\sqrt{2}\right)^{\pi/2} \iff \sqrt{3} \ln\left(\frac{e}{2}\right) < \frac{\pi}{2} \ln\sqrt{2} \iff \sqrt{3}(1 - \ln 2) < \frac{\pi}{4} \ln 2 \iff \sqrt{3} < \left(\frac{\pi}{4} + \sqrt{3}\right) \ln 2$. We have $\pi > 3.141$ so $\frac{\pi}{4} > .785$ and $\sqrt{3} > 1.732$, and we have $\ln 2 > .69$ and so $\sqrt{3}\left(\frac{\pi}{4} + \sqrt{3}\right) \ln 2 > (2.517)(.69) > 1.736 > \sqrt{3}$.

7: Given $a \in \mathbf{R}$, let $x_1 = a$ and for $n \ge 1$ let $x_{n+1} = x_n \cos(x_n)$. Then $\{x_n\}$ converges for all choices of $a \in \mathbf{R}$.

Solution: This is FALSE. When $a = \pi$ we have $x_n = (-1)^{n+1}\pi$.

8: Define a bijection $f: \mathbf{Z}^+ \to \mathbf{Z}^2$ by counting the elements in \mathbf{Z}^2 as follows. Let f(1) = (0,0) and f(2) = (1,0), and then continue counting by spiralling counterclockwise so that for example we have

Then there exists $a \in \mathbf{Z}^+$ such that $f^{-1}(a,0)$ is a multiple of 5.

Solution: This is FALSE. We have $f^{-1}(1,0) = 2$, $f^{-1}(2,0) = 1 + (1+1+2+2) + 3 + 1 = 11$, $f^{-1}(3,0) = 1 + (1+1+2+2+3+3+4+4) + 5 + 2 = 28$, and in general we have

$$f^{-1}(a,0) = 1 + 2(1 + 2 + \dots + (2a - 2)) + (2a - 1) + (a - 1)$$

= 1 + (2a - 1)(2a - 2) + 3a - 2 = 4a² - 3a + 1

In \mathbf{Z}_5 we have

so we see that $f^{-1}(a,0)$ is never a multiple of 5.

9: There exists a permutation $\{a_1, a_2, \dots, a_{20}\}$ of the set $\{1, 2, \dots, 20\}$ such that for all k with 1 < k < 20, either $a_k = a_{k+1} + a_{k-1}$ or $a_k = |a_{k+1} - a_{k-1}|$.

Solution: This is FALSE. Reduce modulo 2 to get $a_k \in \mathbf{Z}_2$. Then for 1 < k < 20 we have $a_k = a_{k-1} + a_{k+1}$, that is $a_{k+1} = a_k + a_{k-1}$. Thus modulo 2, the entire sequence a_1, a_2, \dots, a_{20} is entirely determined from the values a_1, a_2 . The only possibilities are $0000000000 \dots, 011011011 \dots, 101101101 \dots$ and $110110110 \dots$ None of these possibilities can occur since the set $\{1, 2, \dots, 20\}$ has 10 even numbers and 10 odd numbers.

10: There exists a permutation $\{a_1, a_2, \dots, a_{20}\}$ of the set $\{1, 2, \dots, 20\}$ such that for all k with $1 \le k \le 20$, $k + a_k$ is a power of 2.

Solution: This is TRUE. We can use the permutation

11: There exists a partition of $\{1, 2, \dots, 15\}$ into 5 disjoint 3-element sets $S_k = \{a_k, b_k, c_k\}$ such that $a_k + b_k = c_k$ for k = 1, 2, 3, 4, 5.

Solution: This is TRUE. For example, we can use $\{1, 14, 15\}$, $\{2, 7, 9\}$, $\{3, 10, 13\}$, $\{4, 8, 12\}$, $\{5, 6, 11\}$.

12: For every finite set of integers S, $\Big| \big\{ (a,b) \in S^2 \Big| a - b \text{ is odd} \big\} \Big| \le \Big| \big\{ (a,b) \in S^2 \Big| a - b \text{ is even} \big\} \Big|$.

Solution: This is TRUE. Say $S = \{a_1, a_2, \dots, a_k\} \cup \{b_1, b_2, \dots, b_l\}$ where the a_i and b_i are distinct with each a_i even and each b_i odd. Then we have

$$\left| \left\{ (a,b) \in S^2 \middle| a - b \text{ is odd} \right\} \right| = \left| \left\{ (a_i,b_j) \right\} \middle| + \left| \left\{ (b_i,a_j) \right\} \middle| = 2kl \text{ , and} \right.$$
$$\left| \left\{ (a,b) \in S^2 \middle| a - b \text{ is even} \right\} \middle| = \left| \left\{ (a_i,a_j) \right\} \middle| + \left| \left\{ (b_i,b_j) \right\} \middle| = k^2 + l^2 \right.$$

and we have $(k^2 + l^2) - 2kl = (k - l)^2 \ge 0$.

13: For every set S, whose elements are finite subsets of \mathbf{Z} , with the property that $A \cap B \neq \emptyset$ for all $A, B \in S$, there exists a finite set $C \subset \mathbf{Z}$ such that $A \cap B \cap C \neq \emptyset$ for all $A, B \in S$.

Solution: This is FALSE. For example we can take

$$S = \left\{ \{1, 2\}, \{2, 3\}, \{1, 3, 4\}, \{2, 4, 5\}, \{1, 3, 5, 6\}, \{2, 4, 6, 7\}, \{1, 3, 5, 7, 8\}, \{2, 4, 6, 8, 9\}, \cdots \right\}$$

14: There exists a linearly independent set $\{A_1, A_2, A_3\}$ of real 3×3 matrices such that every non-zero matrix in Span $\{A_1, A_2, A_3\}$ is invertible.

Solution: This is FALSE. Indeed we can not even find two such matrices. Let $\{A, B\}$ be a linearly independent set of 3×3 real matrices. Since $\det(A + tB)$ is a real polynomial of degree 3 in t, it has a real root, so we can choose $t \in \mathbf{R}$ so that A + tB is not invertible.

15: For all 2×2 real matrices A, B and C, $\det \begin{pmatrix} I & A \\ B & C \end{pmatrix} = 0$ if and only if $\det \begin{pmatrix} I & B \\ A & C \end{pmatrix} = 0$.

Solution: This is FALSE. For example, take $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

16: There exists a positive integer n and an $n \times n$ matrix A whose entries lie in $\{0,1\}$, such that $\det(A) > n$.

Solution: This is TRUE. For example, let $A = \begin{pmatrix} B & 0 & 0 & 0 \\ 0 & B & 0 & 0 \\ 0 & 0 & B & 0 \\ 0 & 0 & 0 & B \end{pmatrix}$ where $B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$.

Then A is a 12×12 matrix and $det(A) = (det B)^4 = 2^4 = 16$.

17: For every function $f: \mathbf{R} \to \mathbf{R}$, if f^2 and f^3 are both polynomials, then so is f.

Solution: This is TRUE. Say $f^2 = g$ and $f^3 = h$ where g and h are polynomials. Write $g = a p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$ and $h = b p_1^{l_1} p_2^{l_2} \cdots p_m^{l_m}$ where $a, b \in \mathbf{R}$, the p_i are distinct irreducible polynomials, and each $k_i, l_i \geq 0$. Since $g^3 = h^2$ we have $3k_i = 2l_i$ for all i. Thus each l_i is a multiple of 3, say $l_i = 3t_i$. Since $f^3 = h = b p_1^{3t_1} p_2^{3t_2} \cdots p_m^{3t_m}$, we have $f = \sqrt[3]{b} p_1^{t_1} p_2^{t_2} \cdots p_m^{t_m}$, which is a polynomial.

18: Every real polynomial is equal to the difference of two increasing polynomials.

Solution: This is TRUE. Choose an even inter $m > \deg(f')$. Since $\lim_{x \to \pm \infty} (x^m + f') = \infty$, it follows that $x^m + f'$ has an absolute minimum. Chose a > 0 so that $x^m + f'(x) + a > 0$ for all $x \in \mathbf{R}$. Let $g(x) = \frac{1}{m+1} x^{m+1} + ax$. Since $g'(x) = x^m + a \ge a > 0$ for all $x \in \mathbf{R}$, g is increasing. Since $(f+g)'(x) = x^m + f'(x) + a > 0$ for all $x \in \mathbf{R}$, f+g is increasing. Thus f = (f+g) - g is the difference of two increasing polynomials.

19: For every polynomial f with integer coefficients, and for all distinct integers a_1, a_2, \dots, a_l , there exists an integer c such that the product $p(a_1)p(a_2)\cdots p(a_l)$ divides f(c).

Solution: This is FALSE. For example, let $f(x) = 2x^2 + 2$. Then f(0) = 2 and f(1) = 4 but there is no integer c such that f(c) is a multiple of 8. Indeed, for $x \in \mathbb{Z}_8$ we have $x^2 \in \{0, 1, 4\}$ so $f(x) \in \{2, 4\}$.

20: For all increasing functions $f, g: \mathbf{R} \to \mathbf{R}$ with f(x) < g(x) for all $x \in \mathbf{Q}$, we have $f(x) \leq g(x)$ for all $x \in \mathbf{R}$.

Solution: This is FALSE. For example, we can take $f(x)=\begin{cases} 2(x-\sqrt{2}) \text{ , for } x<\sqrt{2}\\ x-\sqrt{2}+1 \text{ , for } x\geq\sqrt{2} \end{cases}$

and
$$g(x) = \begin{cases} x - \sqrt{2}, & \text{for } x \le \sqrt{2} \\ 2(x - \sqrt{2}) + 1, & \text{for } x > \sqrt{2}. \end{cases}$$

21: There exists a continuously differentiable function $f : \mathbf{R} \to \mathbf{R}^+$ such that f'(x) = f(f(x)) for all $x \in \mathbf{R}$.

Solution: This is FALSE. Suppose, for a contradiction, that f is such a function. Since $f'(x) = f(f(x)) \in \mathbf{R}^+$ for all $x \in \mathbf{R}$, f is increasing. For all $x \in \mathbf{R}$ we have $f(x) \in \mathbf{R}^+$, that is f(x) > 0, so since f is increasing f(f(x)) > f(0), and so f'(x) = f(f(x)) > f(0). It follows, from the Mean Value Theorem, that all x < 0 we have f(x) < f(0) + f'(0)x (indeed, we have $\frac{f(x) - f(0)}{x - 0} = f'(c) > f(0)$ for some x < c < 0, and so, since x < 0, we have f(x) - f(0) < x f(0), that is f(x) < f(0) + f'(0)x). In particular, when $x = -\frac{f(0)}{f'(0)}$ we have $f(x) < f(0) - f'(0) \cdot \frac{f(0)}{f'(0)} = 0$, which is not possible since f takes values in \mathbf{R}^+ .