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§ 1. Introduction. Menger’s Theorem [1] for graphs has been generalized
by Nobeling [3] to locally connected compact metric spaces. In this paper
we generalize Menger’s Theorem to Hausdorff topological spaces with .
no other global conditions on the space, but with local conditions on the
two subsets involved.

THEOREM 1.1. Let A and B be disjoint open subsets of a Hausdorff
topological space X. Suppose that the maximal number of disjoint arcs
from A to B is finite. Then this number is equal to the minimal number of
points that have to be removed from X to separate A and B into different
arc components. '

‘When we restrict X to be a graph, our proof of Theorem 1.1 reduces
essentially to Ore’s proof of Menger’s Theorem [4], Chapter 12.

CoROLLARY 1.2 (Menger’s Theorem). Let A and B be disjoint sets of
vertices of a finite or infinite graph X. Suppose that there is no edge with
one vertex in A and the other in B. Then the maximal number of disjoint
arcs from A to B is equal to the minimal number of vertices that have to be
removed from X to separate A and B into different components.

Sections 2 and 3 are devoted to proving Theorem 1.1. In section 4
we show, by example, that some of the conditions of Theorem 1.1 and
Nobeling’s result cannot be weakened. Finally in section 5 we discuss
the case where the maximal number of arcs is infinite.

The author wishes to thank Michael Mather for his helpful comments
and Mary Ellen Rudin for Example 5.1.

§ 2. Definitions. Let 4 and B be subsets of a topological space X.
Let I = [0, 1] be the closed unit interval and I = (0, 1) be the open unit
interval. An arc A from A to B in X is an injective map A: I-X such
that 1(0) e A and A(1) € B. The family of arcs {4} is said to be disjoint if

Iy i(l)=0
for all arcs Ag, 4, in the family with ¢ # r.

* Supported in part by a National Research Council Grant.
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LEMMA 2.1. Let A and p be two arcs in a Hausdorff space X and let
w=sup{t eI| A(t) e u(I)}.
Then A(w) e p(I). '
Proof. The spaces A(I) and u(I) are compact subsets of a Hausdorff
space X and hence are closed. Now

A(w) e A1) ~ p(I) = A(I) ~ p(I).

Hence A(w) e u(I). :

Let 21y ..., As be a family of arcs in X. An arc u from u(0) to u(1) is
called a cross arc with respect to 4,, ..., 4, if for 1 < ¢ < », the intersection
#(I) ~ 24(I) is a finite number of disjoint closed arcs of the form u[s, s']
= Aft, '] where u(s) = A,(t)) # u(s’) = A,(0).

PROPOSITION 2.2. Let u be a cross arc from A to B with respect to the
n disjoint arcs Ay, ..., Az from A to B. Then there exist n-+1 disjoint arcs
from A to- B. ‘

Proof. It can be proved in a similar way to [4], Theorem 12.1.1
that the symmetric difference of x(I) and A,(I)wv ...u A4(I) consists
of n+41 disjoint arcs from A to B together with a finite number of closed
circuits.

Denote by 4A(A4, B) the maximal number of disjoint arcs from A
to B in X and by I'(4, B) the minimal number of points that have to
be removed from X— (A v B) to separate 4 and B into different arc
components.

§ 3. Menger’s Theorem.

Proof of Theorem 1.1. Let A(A,B)=mn and A,..,4s be
a maximal set of disjoint arcs from A to B in X. It is clear that A(4, B)
< I'(A, B) because at least one point must be removed from each of the
arcs in order to separate 4 and B.

For each 1, let ¢; be the supremum of ¢ in I such that, 4;(f) is in A or
that there exists a cross arc from A to A4t) with respect to Ay, ..., .
Since A is open, A4(#;) is not in A. By Proposition 2.2 there is no cross
arc from A to B and, since B is open, 44(¢;) is not in B.

We will now prove that

n
Y =X—U 4t
i=1 ,
separates 4 and B into different arc components. Suppose that there
is an arc from A to B in Y. Then by Proposition 2.2 there is an arc »
in Y from
n n
Ao JM0,8) to Bwu |JAt,1]
i=1 i=1

which is disjoint from 4, ..., 2,.
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From the definitions of ¢;, it follows that there is no eross are in X
from A to »(1); hence »(0) is not in A. Let »(0) = A,(r) where 1 <e<n
and 0 < r < t,. Again from the definition of #, there is a.cross arc x4 in X
from A to 2,(s) with respect to 4,, ..., 4s, where 0 <r<<s <#%,.

If 4 and » are disjoint then, the arc u followed by the arc A,(¢),
8 > 1> r and then followed by the arc », is a cross arc from A to »(1).

If 4 and » are not disjoint let

w=sup{teI| »(t) e p(D)}.
By Lemma 2.1 »(w) is in u(I). Hence the arc x4 from A to v(w) followed
by » from »(w) to »(1) is a cross are from A to »(1). This contradicts the
definition of the ¢;, so that Y separates 4 and B into different arc com-
ponents. Hence A(A,B)> I'(A,B) which completes the proof of
Theorem 1.1.

Proof of Corollary 1.2. Let X be any finite or infinite graph.
Give all the edges the same length and put the weak topology on X.
For the set of vertices A define A* to be the union of 4 with all the open
edges with one vertex in A. Define B* similarly. Then A* and B* are
disjoint open subsets of X. Corollary 1.2 now follows by applying
Theorem 1.1 to A* and B* and noting that in this case the given con-
struction for finding the points of X to be removed from each arc will
always lead to a vertex of the graph.

§ 4. Counterexamples. We show that in Theorem 1.1 the condition
that X be Hausdorff cannot be dropped and that in Nébeling’s case [3],
when A and B are closed, neither the condition of locally connectedness
nor the condition of compactness can be dropped.

ExampLE 4.1. Let X consist of two copies of [—1,1] identified at
all points except 0. Let 4 =[—1,0) and B= (0,1]. Then X is T, but
not Hausdorff and A(A, B) =1 while I'(4, B) = 2.

ExAMPLE 4.2. Let

X=Ix{0}wIx{1}v U{ }

n>1

I : c

Example 4.2 Example 4.3
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be a subset of the plane R? and let 4 = (0,0), B= (1,0) and O = (0, 1).
Then X is not compact and A(4,B)=1 while I'(4,B)=2. Also
A(A, C) =1 while I'(4, C) = x,.

ExAMPLE 4.3. Add the line {0}x I to Example 4.2. This is now
compact but not locally connected and A(4, C) = 2 while I'(4, C) = x,.

§ 5. Infinite number of arcs. It is always true that A(4, B) < I'(4, B).
If X is a graph and A(4, B) is an infinite cardinal we can find a separating
set by removing all the vertices in X—(4 v B) of a maximal disjoint
set of arcs from A to B. Since there are only a finite number of vertices
on each arc A(4, B)= I'(4, B).

If X is a topological space and A(A, B) is at least the cardinality
of the continuum, a separating set can be obtained by removing all the
points in X— (A v B) of a maximal disjoint set of arcs from A to B.
Then A(A, B)= I'(A, B).

When A(A, B) = ¥, Menger’s Theorem for topological spaces is false
as the following example due to Mary Ellen Rudin shows.

ExampPLE 5.1. Let X be the subset of the plane R? shown in the
diagram which consists of the product of the Cantor set with the closed
unit interval [—1, 1] together with the open set A below the ordinate —1
and the open set B above the ordinate -+1. Then A(4, B) = v, while
I'(A, B) has the cardinality of the continuum.

This-follows from the fact that there exists an arc from A to B along
the interval corresponding to any given point of the Cantor set. Any
point of the Cantor set has a triadic expansion that uses only 0’s and 2’s
and an arc can be constructed starting at the lowest vertex of ‘A’ and

1) <>

Example 5.1 Example 5.2
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turning left or right at the nth junction depending on whether there
is a 0 or 2 in the nth place of the triadic expansion.

This example is not locally connected but can be made so by shrinking
each closed interval [—1,1] to a point.

For finite 4(A4, B) we have shown that there exists a subset V of X
which separates A and B, and a set of disjoint arcs W from A4 to B such
that each point of V lies on exactly one of these arcs and each arc contains.
exactly one point of V. Erdos [2], p. 292 has asked whether this result
holds for graphs when A(4, B) is infinite. The following example shows
that the result is false for topological spaces, even when A(4,B)
=I'(4, B). : '

EXAMPLE 5.2. Let X be constructed as follows. Take a unit interval I
and two points P and @ outside I. Join P to all the irrational points of I
and @ to all the rational points of I. Let A and B be neighbourhoods of P
and ¢ respectively.

Then A(A,B)= I'(4,B)=1¥x,. But suppose V is a separating set
for A and B and that W is a set of disjoint ares from A to B such that
each arc contains exactly one point of V. Then, because the rationals
and irrationals are dense in one another any arc of W can be removed
and replaced by an infinite set of disjoint arcs. Each of these new arcs
contain a point of the separating set V so that there exists a point of V'
which did not lie on any of the original ares of W.
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