SUSPENSION OF THE LUSTERNIK-SCHNIRELMANN CATEGORY

WILLIAM J. GILBERT

Let cat be the Lusternik-Schnirelmann category structure as defined by Whitehead [6] and let cat be the category structure as defined by Ganea [2]. We prove that

$$\Sigma$$
 cat $X = \mathbf{w} \Sigma$ cat X for any space X

and

 $\Sigma \overline{\operatorname{cat}} X = w \overline{\operatorname{cat}} X$ for any simply connected X.

It is known that w Σ cat X = conil X for connected X. Dually, if X is simply connected,

$$\Omega \overline{\operatorname{cocat}} X = w \overline{\operatorname{cocat}} X.$$

1. We work in the category \mathcal{T} of based topological spaces with the based homotopy type of CW-complexes and based homotopy classes of maps. We do not distinguish between a map and its homotopy class. Constant maps are denoted by 0 and identity maps by 1.

We recall some notions from Peterson's theory of structures [5; 1] which unify the definitions of the numerical homotopy invariants akin to the Lusternik-Schnirelmann category. For any category $\mathscr C$, by a right structure $\mathscr R=(R,P,T;d,j)$ over $\mathscr C$ we mean a triple R,P,T of covariant functors from $\mathscr C$ to $\mathscr T$ together with a pair of natural transformations $d\colon R\to P$ and $j\colon T\to P$. An object $X\in\mathscr C$ is said to be $\mathscr R$ -structured if there exists a map $\phi\colon RX\to TX$ such that $jX\circ\phi\simeq dX$. If $\mathscr R=(R,P,T;d,j)$ is a right structure over $\mathscr C$, its suspension Σ is the right structure $(\Sigma R,\Sigma P,\Sigma T;\Sigma d,\Sigma j)$ over $\mathscr C$. The associated weak structure to $\mathscr R$ is the right structure w $\mathscr R=(R,P,T_w;d,j_w)$ over $\mathscr C$ where we define $q\colon P\to Q$ to be the cofibre of p and p and p and p to be the fibre of p. Then p can be p structured if and only if p od p od p od p od p.

Let

$$N \to T' \stackrel{j'}{\to} P$$

be the natural fibration obtained from j and let

$$N \longrightarrow M \xrightarrow{p} R$$

be the fibration obtained from pulling back j' by means of $d: R \to P$. Then we call $\overline{\mathscr{R}} = (R, R, M; 1, p)$ the strong structure associated with \mathscr{R} .

Received December 23, 1969. This research was supported by an NRC Grant A5598 and was done while the author was a Fellow of the C.M.C. Summer Research Institute.

Let $\mathscr{K}_n = (1, \Pi_1^n, T_1^n; \Delta, j)$ be the *n*-category structure over \mathscr{T} , where T_1^n is the fat wedge functor, Δ the diagonal transformation, and j the inclusion transformation. The X is \mathscr{K}_n -structured if and only if $\operatorname{cat} X < n$ using Whitehead's definition. Let $\overline{\operatorname{cat}}$ be the strong structure associated with cat . Then $\overline{\operatorname{cat}}$ is equivalent to Ganea's definition of category and $\operatorname{cat} X = \overline{\operatorname{cat}} X$ for $X \in \mathscr{T}$.

2. Let $w\Sigma$ cat be the weak structure associated with Σ cat. (There is some confusion here in the literature. This invariant $w\Sigma$ cat is denoted by Σ w cat in [1;5].)

Theorem 2.1. For any connected $X \in \mathcal{T}$,

$$\Sigma \operatorname{cat} X = \operatorname{w} \Sigma \operatorname{cat} X = \operatorname{conil} X.$$

Proof. From the definitions, $\Sigma \operatorname{cat} X < n$ if and only if there exists a map $\phi \colon \Sigma X \to \Sigma T_1^n X$ such that $\Sigma j \circ \phi \simeq \Sigma \Delta$ and w $\Sigma \operatorname{cat} X < n$ if and only if $\Sigma (q \circ \Delta) \simeq 0$, where $q \colon X^n \to X^{(n)}$ is the projection from the *n*-fold product to the *n*-fold smash product of X.

Since $X^{(n)}$ is the cofibre of j, it follows that $\Sigma \operatorname{cat} X \ge \operatorname{w} \Sigma \operatorname{cat} X$. Suppose that $\operatorname{w} \Sigma \operatorname{cat} X < n$. Then there exist well-known maps

$$\chi \colon \Sigma X^n \to \Sigma T_1^n X$$
 and $\tau \colon \Sigma X^{(n)} \to \Sigma X^n$

such that $\chi \circ \Sigma j \simeq 1$, $\Sigma q \circ \tau \simeq 1$ and $\Sigma j \circ \chi + \tau \circ \Sigma q \simeq 1$. Let $\phi = \chi \circ \Sigma \Delta$ so that

$$\Sigma j \circ \phi = \Sigma j \circ \chi \circ \Sigma \Delta$$

$$\simeq \Sigma j \circ \chi \circ \Sigma \Delta + \tau \circ \Sigma q \circ \Sigma \Delta$$
since $\Sigma q \circ \Sigma \Delta \simeq 0$

$$= (\Sigma j \circ \chi + \tau \circ \Sigma q) \circ \Sigma \Delta$$
since $\Sigma \Delta$ is a suspension
$$\simeq \Sigma \Delta.$$

Hence Σ cat X < n and so Σ cat $X = w \Sigma$ cat X. The equality $w \Sigma$ cat X = conil X for connected X follows from [3, Theorem 4.1].

Theorem 2.2. For any simply connected $X \in \mathcal{T}$,

$$\Sigma \overline{\cot} X = w \overline{\cot} X$$
.

Proof. Let the fibration

$$F_n \xrightarrow{i} E_n \xrightarrow{p} X$$

be the Whitney sum of n copies of the standard fibration $\Omega X \to PX \to X$ where PX is the space of paths in X starting at the base point. Let $\epsilon \colon X \to C_n$ be the cofibre of p. Now $\overline{\operatorname{cat}}\ X < n$ if and only if there exists a map $r \colon X \to E_n$ such that $p \circ r \simeq 1$. Hence, it follows that $\sum \overline{\operatorname{cat}}\ X < n$ if and only if there exists a map $s \colon \Sigma X \to \Sigma E_n$ such that $\Sigma p \circ s \simeq 1$ and w $\overline{\operatorname{cat}}\ X < n$ if and only if $\epsilon \simeq 0$.

Suppose that w $\overline{\operatorname{cat}} X < n$ so that in the Barratt-Puppe sequence

$$E_n \xrightarrow{p} X \xrightarrow{\epsilon} C_n \xrightarrow{k} \Sigma E_n \xrightarrow{\Sigma p} \Sigma X \xrightarrow{\Sigma \epsilon} \Sigma C_n,$$

 $\Sigma E_n \simeq C_n \vee \Sigma X$ and $\Sigma X \simeq \Sigma E_n \cup CC_n$. Hence, it is possible to find a map $s \colon \Sigma X \to \Sigma E_n$ such that $\Sigma p \circ s \simeq 1$ and so w $\overline{\operatorname{cat}} X \ge \Sigma \overline{\operatorname{cat}} x$.

Conversely, suppose that Σ $\overline{\operatorname{cat}} X < n$ so that there exists a map $s \colon \Sigma X \to \Sigma E_n$ such that $\Sigma p \circ s \simeq 1$. The map $\langle k, s \rangle \colon C_n \vee \Sigma X \to \Sigma E_n$ in which C_n is mapped by k and ΣX is mapped by s induces isomorphisms in homology. Since ΣE_n and C_n are simply connected, it follows from Whitehead's theorem that $\langle k, s \rangle$ is a homotopy equivalence. Hence $\epsilon \simeq 0$ and w $\overline{\operatorname{cat}} X < n$ which proves the theorem.

If cocat is the structure defined by Ganea [2; § 6], Theorem 2.2 dualizes to give the following theorem.

Theorem 2.3. For any simply connected $X \in \mathcal{T}$,

$$\Omega \overline{\operatorname{cocat}} X = w \overline{\operatorname{cocat}} X.$$

Remark 2.4. In the proof of Theorem 2.2, the only fact that we used about the $\overline{\operatorname{cat}}$ structure was that d was the identity functor. Hence, if $\mathscr{R} = (R, R, T; 1, j)$ is a right structure over \mathscr{C} , for any $X \in \mathscr{T}$ such that TX and RX are simply connected, it follows that

X is $\Sigma \mathcal{R}$ -structured if and only if X is w \mathcal{R} -structured.

Remark 2.5. Theorem 2.2 together with the results of [4] show that even though $\cot X = \overline{\cot} X$, it does not follow that $\Sigma \cot X = \Sigma \overline{\cot} X$ or that w $\cot X = w \overline{\cot} X$.

REFERENCES

 I. Berstein and P. J. Hilton, Homomorphisms of homotopy structures, Topologie et géométrie différentielle, Séminaire C. Ehresmann, Vol. 5 (Institut H. Poincaré, Paris, 1963).

- 2. T. Ganea, A generalization of the homology and homotopy suspension, Comment. Math. Helv. 39 (1965), 295-322.
- 3. T. Ganea, P. J. Hilton, and F. P. Peterson, On the homotopy-commutativity of loop spaces and suspensions, Topology 1 (1962), 133-141.
- W. J. Gilbert, Some examples for weak category and conilpotency, Illinois J. Math. 12 (1968), 421-432.
- 5. F. P. Peterson, Numerical invariants of homotopy type, pp. 79-83 in Colloquium on Algebraic Topology (Matematisk Institut, Aarhus Univ., Aarhus, 1962).
- G. W. Whitehead, The homology suspension, pp. 89-95 in Colloque de topologie algébrique, Louvain, 1956 (Masson et Cie, Paris, 1957).

University of Waterloo, Waterloo, Ontario