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SOME EXAMPLES FOR WEAK CATEGORY AND CONILPOTENCY

BY
W. J. GiLBERT!

1. Introduction

We are concerned here with certain numerical invariants of homotopy type
akin to the Lusternik-Schnirelmann category.

It is known that cat B, the Lusternik-Schnirelmann category of a space B
(when renormalized) is an upper bound for conil B, the conilpotency class of
the suspension of B [18; Theorem 2.10]. I'urthermore if B is an (n — 1)-
connected CW-complex of dimension < (k + 2)n — 2 and conil B < I then
cat B = conil B {2; Theorem 2].

Berstein and Hilton [3; (2.1)] gave a definition of eategory which is equiva-
lent, for most classes of spaces, to the original one of Lusternik and Schnirel-
mann, This definition suggests two other invariants, weat B, the weak cate-
gory of a space B and weat e, the weak category of the natnral embedding map
e: B — QB [3; (2.2)], [7; §56]. These two weak categories take values lying
between those of cat B and conil B, but we will show by examples in Section 2
that all the invariants are different.

None of these definitions of category and weak category dualize easily in
the sense of Eckmann-Hilton. So Ganea introduced yet another definition of
category and weak category, in terms of a ‘ladder’ of fibrations, which does
dualize. We will denote these invariants by G-cat and G-weat respectively.
(See Definition 6.1 of [5] for the cocategory of a space.) In Sections 3 and 4
we will show that G-cat B is the same invariant as cat B but that G-weat B is
different from wcat B.

We collect together the results on the relationships between the various in-
variants in the following theorem. All the numerical invariants in this paper
will be normalized so as to take the value 0 on contractible spaces.

TuroreM 1.1. Let B have the homotopy type of a simply connected countable
CW-complex; then

cat B = G-cat B > G-weat B > wecat B > wecat ¢ > conil B > u-long B
and furthermore all the inequalities can occur.

Here u-long B is the length of the longest nontrivial cup product of positive
dimensional elements of H*(B; R), where R is any commutative ring.
Theorem 1.1 will follow from Theorems 3.4 and 3.5, [7; Theorems 4.4 and

- 5.2] and the remaining two inequalities follow directly from the definitions.
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422 W. J. GILBERT

Examples 4.7, 4.6, 2.4 and 2.3 will show that the first four inequalities can
be strict. The example given at the end of [2] in which B = §° u, ¢°, where
o = my°ns is the generator of m,(S”), shows that the last inequality can be
strict,.

All the examples will be spaces of the form S?u, ¢", where « e, (S?).
We will use Toda’s notation [16] for the homotopy groups of spheres. All
spaces in this paper have the homotopy type of countable CW-complexes and
have a base point denoted by * and all maps preserve base points. The con-
stant map is denoted by 0. We will not usually distinguish between a map
and its homotopy class.

I would like to thank Professor T. Ganea for some helpful discussions
and Dr. I. M. James for his advice and encouragement.

2. Weadk category of the map ¢

In this section we recall the definitions of the various categories and find
examples of spaces which distinguish weat e from weat B and conil B.

Let T be the subset of B**" consisting of points with at least one coordinate
equal to x. Let 7: T%™ — B*™ be the inclusion map and let B**" be the
quotient space B*"'/Ti*' with identification map ¢ : B¥" — B*"_ Tet
A: B — B! be the diagonal map.

The eategory of a space B, cat B, is defined to be the least integer £ > 0
for which there exists amap ¢ : B— Tt withjo¢ =~ A. The weak category,
weat B, is the least integer £ > 0 for which go A =~ 0 and wecat ¢ is the least
integer k& > 0 for which goAce ~ 0: B — (Q=B)*™. It is clear that
weat B > weat e but the two Invariants are different as Example 2.4 will
show.

It is proved in Theorem 3.20 of [3] that if B is a space of the form 8 u, ¢"
then weat B < 1if and only if H(a) = 0 where H : m,_1(8%) — m.(S* A §9)
is the crude Hopf invariant [3; (2.11)]. The arguments used in the proof
of this theorem may be adapted to prove the following proposition.

ProposiTioN 2.1. Let B = 8% u, €"; then weat e < 1 if and only if
(e N\ e)«ll(a) = 0em (Q=8? N\ Q=87).

The map ¢ : 87 — Q=87 is the natural embedding and e /\ e is the map from
the smash product S? A\ 87 which is e on each factor

LeEmMma 2.2. For q even, Q=8 N\ QZ87 has the same (5q — 2)-homotopy
type as the cell complex

T = 8"y, e\ S8\ 8§\ 8\ 8Y
where v = 2tag, tag) € Tag1(S™).

Proof. The space QZS? is homotopic to S% , the reduced product complex
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of James [11], which has a cellular decomposition 8% = S?u; e u; e’y - - -
Milnor [12; Theorem 5] proves that

28T ~ ST\ S/ SR/ L.

Hence it follows that the suspensions of the attaching maps in S. are trivial.
In the complex S% A\ S% the following are the cells of dimension less than
5q. There is one 0-cell and one 2¢-cell. There are two 3g-cells attached by
the maps 2% = 0 and two 4q-cells attached by the maps 2% = 0. The
remaining cell is a 4¢-cell with an attaching map which we shall call

B € 7l'4q_1(SZq \/ S3q \/ Ssq).

By the direct sum decomposition in [9] we can consider 8 an element o
Tig1(S™) @ ma1(S*) ® m4,2(S*). Now both components of 3 in Tag1(S*)
factor through ="t = 0. Let v be the component of 8 in 74,_1(S™).

From the cohomology ring of ©28? [15], for ¢ even, and the multiplication
rule for the tensor product of two rings we see that the square of the
cohomology generator of dimension 2¢ in H*(S% A S%) is 4 times a generator
of dimension 4q. Hence by Steenrod’s definition, the Hopf invariant of v
is 4. When S% /\ S% is suspended all the cells are attached trivially [12;
Theorem 5], hence 2y = 0 € m4,(S**"). Therefore by the delicate suspension
theorem [17; (3.49)] v is a multiple of [w,, ] and it follows from the Hopf
invariant that v = 2[u,, .

Therefore T is the (5g — 1)-skeleton of S% A S% and it has the same
(5¢ — 2)-homotopy type as Q=8 A Q8% This completes the proof of
the lemma.

Hence, for ¢ even, there exists a map & : 7 — Q28? A Q2S? which induce’
isomorphisms in homotopy in dimensions < 53 — 2. Now it is clear tha
(e /\ e)x factors into

T (8%) > ma(S¥u, ) X 1 (T) LN T, (QZ8” A\ Q=89

where 7 and 7 are the inclusion maps and jx maps monomorphically into a
direct summand.

In Theorem 5.2 of [7] it is proved that weat e > conil B but it is mentioned
that an example of strict inequality has not been produced. We will now use
an example which occurs later in the above paper to show that the strict
inequality ean occur.

Example 2.3. Let B = S u, ¢ where @ = 7302 o7 is the gencrator of
order 2 in m(S”). Then wecat e = 2 and conil B =

Proof. Here n, generates m.1(S") and »” generates m5(S*). This example
oceurs In [7; (6.1)] where it is proved that conil B = 1. (See [1; (1.8)] for
the definition of the conilpotency class of a suspension.)
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By Theorem II of [4] the sequence

ms( ) — X m(8) —F s m(S* U, )

is exact and hence Ker ix = Im v« Since w5(87) is the eyclic group of order
2 and v = 2[4, ] it follows that v« = 0 and Ker ix = 0. Now
Ker (e N\ e)x = Ker (kxojxoix) = 0 since the kernels of each of the maps
1%, Jx and kx are zero.

The crude Hopf invariant H(a) = v o g # 0 ¢ rs(SY). Hence
(e N\ e)sxlT(a) # 0 and weate > 1 by Proposition 2.1.

In this example and in the later examples B is a complex containing three
cells and so by the classical definition of the Lusternik-Schnirelmann category
cat B < 2. Hence in this case weat e = 2.

Example 24. LetB = S’ u, €’ wherea = ;0 a1(3) o a1(6) isthe generator
of order 3 in mo(S%). Then weat B = 2 and weat e = 1.

Proof. The element oy (k) is an element of order 3 in s (S, Let
Hy 70 (8Y) — m,1(S™) be a Hopf invariant (see Definition 4.1). For
g = 2andn > 4 H,is an isomorphism and hence Ha{a) = a1(3) o a1(6) e mo( S
By Proposition 4.2 H(«) = ZHy(a) = a1(4) cou(7) # 0 and so weat B = 2.
by Theorem 3.20 of [3].

Hilton [8; p. 195] proves that {[u, w], u] = Fa1(4) (7). Therefore
]’_I(Ct) = :t[[L4, Lq], L4] = :F[’Y, L4] Since'y = 2[L4, L4] and H(a) is of order 3.
By the naturality of the Whitehead product

s H(a) = Fisly, u] = Flixv, ixu] = 0emo(S U, )

sinec ixv = 0. Hence (e A e¢)«H(a) = 0 and weat ¢ = 1 by Proposition
2.1.
3. Ganea’s definition of category

Tet B be a simply connected space. Define the sequence of fibrations

S P —% 5B - B (k > 0)

as follows. &, is the standard fibration in which Ej is the space of paths in B
ending at #, Fy is the space of loops in B and p; maps a path onto its starting
point. Suppose inductively that §; has been defined. Let Eiyn = Exu CF,
be the cofibre of ¢, and extend p, to a map Drst Eiy — B by mapping CF,
to . Convert pr4 into a homotopically equivalent fibre map pyi1 : Exps — B;
this then defines Fi41 .

DerIniTION 3.1.  G-cat B is the least integer & > 0 for which there exists
amap r : B — I such that p,or =~ 1; if no such integer exists G-cat B = .

When p; is converted into a cofibre map let C; be its cofibre and ¢ : B — C
be the induced map.
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DrrINTioN 3.2. G-weat B is the least integer & > 0 for which ¢ ~ 0;
if no such integer exists G-weat B = .
1t is clear that G-cat B > G-weat B.

As in the last section let 75" be the subset of B with at least one co-
ordinatc equal to * and let j : T, B¥™' be the inclusion map.  Convert j

into a fibre map
j’ . E(Bk+1; Bk+l’ 711{'—(—1) N Bk*}*l

whose domain is the space of paths in B*! starting in B*"' and ending in
T, Tts fibre is E(B*"™; &, T%) which is homotopic to the join of (k + 1)
copies of @B [13; Theorem 2].

PropositioN 3.3. The fibration S is homolopic lo the fibration mduced by
the diagonal map A : B — B*™ from the fibre map 7.

Proof. The fibration induced by A from i is

h;k

(Rk:Rk‘—"Qkf + B

where Q. = E(B*™; AB, T:™), R = E(B*'; %, Ti"") and if £eQs then
he(£) = m £(0), m being the projection onto the first factor.

Tt is trivially true that %, is homotopic to ®e. Assume inductively that
F,._1 18 homotopic to Rm .

pm—l
—_——>

Fm—l - Em—l

B
|
! ,
E,, U CF,_, —P", 7

Ous U CRmy — ™ B

The way K, was constructed was to convert pf,l into a fibration. Now p,’,,
is homotopic to a map Bl i Qmau CR,. 4y — B where by, |Qna = hn and
hy(CRm-y) = % Convert k., into the fibre map v : U — B where

U = {(st, ) €Qus U CRuy X B € CQuoy X B' | hy(sn) = v(1)}
and v(sy, ») = »(0). Then v is homotopic to the map pn and has fibre
V = {(su, ) €@us U CRny X PB|h(sp) = »(1)}.

i

Let
Ny, v)e@una X Bllhm—l(l") = y(0)} — Q1

be a path lifting map for the fibration hm1. Define the map
w:lU — Qn = E(B" X B; AB, Ty X Bu B" X #)
by w(sw, v) = (AN(g, —»)(1)s, v) where for any path £ € Qm_1, & is the path
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defined by &(#) = £(st). Then the right hand square in the following diagram
commutes.

V > U ! B

lw,

R.-. X PBU CR,_, X QB |W

l 77
w
hm

Rm—'—‘_—-‘)Qm—*—’B

Hence w induces a map between the fibres V and R, , which can be factored
into two maps w’” and w” defined by w (s, v) = (sh(g, —»)(1),r) and

w'(sg, v) = (&, ) eE(B™ X B; %, T X Bu B"™ X ).

By the same arguments used in the proof of [5; Theorem 1.1] w’ is a weak
homotopy equivalence. By standard excision arguments it is clear that w”
induces homology isomorphisms and since B is simply connected w” is also a
weak homotopy equivalence. Hence by the homotopy exact sequence for
fibrations, the 5-lemma and Whitehead’s Theorem [19; Theorem 1] ®, is
homotopic to the fibration v and hence to %,,. The theorem follows by in-
duction.

The following theorem is also proved in [6; Proposition 2.2| directly from
the classical Lusternik-Schnirelmann definition of category, instead of from
G. W. Whitchead’s definition used here.

TaeoreM 3.4. G-cat B = cat B.

Proof. Suppose G-cat B < k so that there exists a map r : B — &, such
that p,or =~ 1. By Proposition 3.3 there exists a map

v By — TP
such that jou ~ Aopy: By — B Tet ¢ = uor:B — T then
jod) = jouorﬁAOpkoi'QA.
Hence cat B < k.

Conversely, suppose cat B < k and that there exists a map ¢ : B — T4
and a homotopy ¥, : B — B*" such that ¥, = A and ¥, = jed. Define
the map

r:B— E(B;AB, T5™) by #(b)(t) = ¥.(b).

This is a cross-section to &, and by Proposition 3.3 induces a cross-section
to Fi ; hence G-cat B < k.
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TuroreMm 3.5. G-weat B > weat B.

Proof. The maps » and A induce a map A" between the cofibres of py and j
such that the following diagram is homotopy commutative [14; (2.2)]. The
cofibre of j is B**”, the (k + 1)-fold smash product of B.

Ek Di B Qx Ck

T

T k41 J, g 4 Bk+D
Now suppose G-weat B = k; then ¢ ~ 0 and so

qgoA~Aog~0:B— B*"
Henece weat B < k.

4. Weak category and the composite Hopf invariant

In this section we recall the properties of the various Hopf invariants
that we will need. We will give a criterion for G-weat B < 1 in terms of a
composite Hopf invariant and then find examples which distinguish G-weat B
from weat B and cat B.

Consider the following part of the ladder of fibrations used in defining
G-weat B.

QB ., PR P, %, ¢,

L

B+ 9B — 20B 2 B I ¢

Here py is the standard fibre map %, with cofibre Co. In the second fibration
§, of the ladder p; is the evaluation map.

For the remainder of this section we will take B to be the cofibre of a map
o : 8 = Y. In particular we will take B to be of the form S” u,e”. We
will now define a composite higher Hopf invariant in order to use it to approxi-
mate QB by a simpler space.

Let D be the infinite one point union \/ i S and let 1y 1 D — SFOVH
be the projection onto the k-th factor. Fix a homotopy equivalence

¥ (3857, 287 — (D, 8
which is the identity on 8% This can be done by using the James’ maps
Siﬂ — 8KV 10; p. 24].  Let 8 : 8L — QS? be the canonical weak homotopy

equivalence of the reduced product complex [11]. Denote the suspension
homomorphism by = and the Hurewicz isomorphism by

P ’ll'n._l(Sq) e d Wn.Q(QSq).
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DEeriNrrioNn 4.1 [10; p. 24].  The composile higher Hopf invariant
H: 71',,41(8{’) — WILA](D)

is defined by H = yxoZ o b3 o p.
Tor k > 1, the higher Hopf tnvariants

Hk : 71'n~—1(‘Sq) had 71_”'?1<Sk(f7—1)+1)

are defined by Hy = 740 H.

Let D' = Vise S and let p’ 1 D — D' be the map which shrinks
S? to the base point. Define the composite higher Hopf mvariant
H om0 (87 — m_(D') by H = pioH.

In the next proposition we recall from (3.10) and Theorem (3.19) of [10]
the properties of the Hopf invariants we will need. We also state the con-
nections between these Hopf invariants and the crude Hopf invariant

H:7 (8" — m, (S A ST
and the delicate Hopf mvariant
3 7r,,,_1(Sq) 4 W,L(Sq X Sq, Sq \/ Sq>

as defined by Hilton in [3; (2.11)]. Part (ii1) comes from (3.14) of [10].
It follows from Proposition 4.3 of [5] that the delicate Hopf invariant 3¢
is equal to a James type Hopf invariant which Ganea calls 3", Tork > 2,
the higher Hopf invariants H; can be obtained from 3" by projecting from
Q87 « Q87 to the sphere 877" and hence Hi(a) = 0if 5¢(a) = 0.

Prorosition 4.2,

(i) H, = 1, the vdentity homomorphism;

(i) H(£%o2Zn) = H(E)oZn, where £ € mu(S") and n e, o(S");
(iii) 3¢ = ZH,;

(iv) if 3(a) = O then Hi(a) = O for k > 2.

ProrositioN 4.3, Let
7Sy oy
be a cofibration in which Y is (¢ — 1)-connected and Z is (n — 3)-connected,
(n — 1) > g > 3. Then there exists an (n + g — 2)-connected map
m: 2QY ug OT7 — ZQX where B = Za and & : Z — QY s the adjorn! of «.

Proof. Convert v into a fibre map; let ¥ be the fibre and j: ¥ — Y be
induced from the inclusion map of the fibre. Lift @ to a map d: 22 — F
such that « ~ jod and by Lemma 3.1 of [5] d is (n + ¢ — 3)-connected.
Let C be the cofibre of Qj : QF — QY and extend Qvy to a map w : ¢ — QX.
By Theorem 1.1 of [5] the fibre of u is homotopic to QF x @°X; hence u is
(n + ¢ — 3)-connected. lLet 8 = Z&; then 8 ~ 2Qjo = d and in the following
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diagram the horizontal sequences are cofibrations and ¢ is induced from the
maps between these cofibrations [14; (2.2)].

zZ ————é——> QY —— 20} U,; CZZ
=d Za v
ZQF -Z—QJ——) Z2QY —— 2C
Qv Zu
z0X
Since =d is (n + ¢ — 3)-connected, by applying the H-lemmn to the

homology exact sequence of the above colibrations, we wce that » is
(n + ¢ — 2)-connccted.
Tet m = Suov:ZQY ugCZZ — 2QX and then the proposition follows,

Remark 4.4. If =Z = §* " and Y = S in the above proposifion then
X = S%u, ¢" and the map § = Za ew, (208", Bui

H(a) = ys0Zob5 oa = Pxo (20)5 o
and ¥ o (260)% is an isomorphism. Hence in the above proposition we ean
consider 8 to be H(a) and m to be the map m : Duge” — Q3.
TurorEM 4.5. If B = S"u,e’,n — 1 > g > 3, then Goweat B < 14f
and only if EH (a) = 0 e, (ED").

Proof. let m: Duge” — ZQB be the map delined in Proposition 1.3 and
Jet 1 be the cofibre of the map pr o m.

14

m ¥
D Uge" Pi° & B N c
|,

l’" , |

¢
3B B U 0

In the above diagram m induces a map of cofibres i, : C 1— Cy. By apply-
ing the 5-lemma to the homology exact sequence of the above cofibrations
we see that m; is (n + ¢ — 1)-conneeted.

Now €' = BuC(Duge’) = (STus ') uC((S" D) uge) and prom
maps 87 onto S’ with degree 1. Therefore since the embedding 87 < C;
can be pulled back to the cofibre (S* \/ D) ug €" it is nulthomotopic. Hence
shrinking 87 to a point €1 =~ C, = 8" u, C(D" u; ¢") where 5 = p' o8 = H'(a)
and €, is the cofibre of ¢ : D' u; ¢* — 8™ which is induced from p; o m.

We shall prove that (1 is homotopic to =D’.  Since py o m maps D into 87,
when we shrink S to a point ¢ maps D’ to the base point.
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Now ms: H,(D ug ¢") — H,(ZQB) is an isomorphism so that ¢ maps the
n-cell onto S with degree =4=1. Hence, if the degree of ¢ on the n-cell is
+1, ¢ is homotopic to the map ¢ which occurs in the following eofibration

sequence for §:
? N

yn—1 6 4 7 7 & N 2‘
ST D - D use— 8" -

> 2D’

By [14; Satz 5], € which is homotopic to C,, is also homotopic to ZD" and
the inclusion map S* — (' is homotopic to =5. If the degree of ¢ on the n-cell
is —1 then the inclusion S” — C, is homotopic to —Z3.

Let & be the characteristic map of the n-cell in B. Factor ¢, through C;
by means of g1 .

€ smY =& (8,8Y 45 (0, %)

DN, S

(C1, %)

Let ¢ e m,(C}) be the element represented by g1oa The inclusion map
8" — (. is in the homotopy class ¢". Hence

¢ = 35 = £3ZH (a) e (ZD').

Let ¢ = nux ¢ emy(Cy) represent ¢; o @; then we know that my is an
isomorphism in dimension n. If n — 1 > ¢ > 3, C; has no cells in positive
dimensions less than ¢ + 1 and it follows that ¢, ~ 0 if and only if ¢ = 0.
Hence the following five statements are equivalent:

(i) G-weat B < 1.

(ii) ¢ ~0.

(i) ¢ = 0em(Cy).

(iv) ¢ = 0em(CL) ~ m(ZD).
(v) ZH'(a) = 0em,(ZD").

Example 4.6. Tet B = 8 u, € where a = e;0p0vy¢ m(S%) is an ele-
ment of order 2, then cat B = 2 and G-weat B = 1.

Proof. Recall from Chapter 6 of [16] that the element ¢; of order 2 is the
generator of m,(:S’) and is defined by the secondary composition {ns, Zv’, v}, .
The element v, € m,43(S™) is the generator of order 8 in the stable 3-stem.
Since »u and »1 are both suspensions it follows from Proposition 4.2 (ii)
that H’(a) = H,(S;;) © P19V,

Now H'(e;) emu(S° \/ 8"\ 8V 8") which by Theorem A of [9] is iso-
morphic to the direet sum decomposition

™ (S%) @ mm(S") ® 71'11(39) @ 1r11(S”) ® mu(S").

By the definition of Hy(e;) the projections of H'(e;) on the first and third
summands are Hy(e;) e m1(S°) and Hy(es) e mu(S°). The projections on the
other summands are zero since 7;1(S’) = 0 and = (S") = Z.
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Now by (6.1) of [16] Hs(es) = wsovs and by a proof similar to that of
(2.3) of [16] we see that

Hi(es) C {Hy(my), EV’y vij1 =0

since the coset consists of a single element. Thus the only non-zero com-
4 .
ponent of H (a) is
5
Hy(a) = vsovgovyovyemz(S°).

From the information on the 12-stem obtained in the proof of (7.6) of [16]
we see that the suspension of Hy(a) is zero and hence by Proposition 4.2
we conclude that 3¢(a) = 0 while ZH'(a) = 0.

Therefore cat B = 2 by [3; (3.20)], while G-weat B = 1 by Theorem
4.5 above.

Example 4.7. let B = §* u, e where a = as(3) is an element of order 3
in 74(8%); then G-weat B = 2 and weat B = 1.

Proof. The crude Hopf invariant f(a) lies in m5(S®) which contains no
element of order 3. Hence H(a) = 0 and weat B = 1 by {3; (3.20)].

By (13.10) of [16] Hy(a) = z.aa(7) e mu(S7) for some z # 0 (mod 3)-
Therefore ZH;(o) = z.a2(8) which is non-zero. Hence ZH'(a) # 0 and by
Theorem 4.5 G-weat B = 2.
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