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Abstract—We investigate the basins of attraction in the complex plane of Newton’s method for finding
muitiple roots and illustrate what happens as two simple roots coalesce to form a double root.

1. INTRODUCTION

Newton’s method for finding a real or complex root
of a function is very efficient near a simple root because
the algorithm converges quadratically in the neigh-
borhood of such a root. However, at a multiple root,
that is, a root of order greater than one, Newton’s
method only converges linearly. Various modifications
of Newton’s method have been proposed that converge
quadratically at multiple roots. One standard method
that we discuss here will find the roots of the function
¢(z) by applying Newton’s method to the function
¢(2)/g'(z). Newton’s method applied to this quotient
will always converge quadratically near all the roots of
¢(2). This method introduces extraneous fixed points
into Newton’s method, but they are always repelling.
We plot the basins of attraction for the roots in the
complex plane and illustrate what happens to these
basins as two simple roots coalesce to form a multiple
root. We then compare this method with other Newton
methods.

2. NEWTON'S METHOD FOR MULTIPLE ROOTS
The standuard Newton’s Method for finding the real
or complex roots of a function g(z) consists of iterating
the function

g(z)
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by starting with some initial approximation zy and de-
fining the (n + 1)st approximation by z,,., = N(zZ,).
See [1] and [2] for the connection between the global
study of Newton’s method for finding complex roots
and dynamics in the complex plane.

Any root of the function g(z) is a fixed point of
N(z). If wis a root of a polynomial g(z) of order &,
then the multiplior (or ¢igenvalue) of the fixed point
wis N'(w) = (k — 1)/k: this multiplier gives infor-
mation about the behavior of the dynamics of the it-
eration near the fixed point [ 3, §6.1]. At a simple root,
k = 1 and the multiplier is zero, which means that w
is a super-attracting fixed point and Newton’s method
converges quadratically in some neighborhood of the
fixed point. At a multiple root, & > 1 and the multiplier
lies between 0 and 1, which means that the fixed point
w is attracting, but that the convergence will only be
lincar. Hence Newton'’s method will not be very sat-
isfactory near a multiple root. The point at infinity is
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a repelling fixed point with multiplier ¢//(d — 1), where
d is the degree of the polynomial g(z). This means
that large values of z, will tend to be pushed away from
infinity.

If g(z) has a root of order k at the point w, then
2(2)/g'(z) has a simple root at w. If we apply the stan-
dard Newton’s method to g(z)/g'(z) we obtain

g(2)g'(2)
[£'(2))" —g(2)g"(z)

M(z)=z—

This is called Newton'’s method for multiple roots [ 4,
Egs. 8.6-24]. It is quadratically convergent at every
root of g( ), but could be more complicated to com-
pute than the standard Newton’s method because it
involves second derivatives. Furthermore, there may
be fixed points of M(z) that are not roots of g(z). The
critical points of g(z), that are not also roots of g(z),
are extraneous fixed points for this Newton’s method
for multiple roots. However, if wis such an extraneous
fixed point then the multiplier is M'(w) = 2, which
means that w is a repelling fixed point and so will not
affect Newton’s method. If g(z) is a polynomial, then
infinity is never a fixed point for M(z).

Figure 1 shows the basins of attraction of the roots
when this method is applied to the polynomial g(z) =
z2(=* — 1). that has one double root and three simple
roots. If the initial value z, lics in the white region then
Newton’s method for multiple roots will converge to
within 0.001 of the origin in 10 iterations. Initial values
lying in the colored regions will converge to one of the
cube roots of unity, while those lying in the black re-
gions have not converged to within 0.001 of any root
in 10 iterations.

In practice, because of experimental errors or trun-
cation of coeflicients, the polynomial may not have a
multiple root, but two or more roots that are very close
together. This causes no problem to this Newton’s
method for multiple roots. For example, if the double
root in the polynomial of Fig. 1 was split into two close
roots to obtain g(z) = z(z + 0.01)(z* — 1), then the
rate of convergence of Newton’s method for multiple
roots is unchanged. Notice that the basins of attraction
of the three cube roots in Figs. 1 and 2, which are the
red. blue, and green arcas, are basically the same. The
white region in Fig. 1, which is the basin of attraction
of the double root at the origin, is the union of the
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Fig. 1. Newton’s Method for multiple roots applied to g(z)
= z2(z3 — 1). After 10 iterations points in the white and
colored regions come to within 0.001 of a root.

white and yellow regions of Fig. 2, which are the basins
of attraction of the two close roots, 0 and —0.01.

3. OTHER METHODS FOR A MULTIPLE ROOT

Let us compare the above method with other New-
ton methods for multiple roots. It is possible to use the
standard Newton’s method. Figure 3 illustrates the ba-
sins of attraction of the roots of g(z) = z?(z* — 1)
after 10 iterations. If this figure is compared to Fig. 1,
we see that there is a large black area in the basin of
attraction of the double root 0, where points have not
come close to the root after 10 iterations, because the
method only converges linearly at the double root.
Even if we look at the standard Newton’s method ap-
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Fig. 2. Newton’s Method for multiple roots applied to g(z)

=z(z+0.01)(z*>— 1). After 20 iterations points in the white
and colored regions come to within 0.001 of a root.

Fig. 3. The standard Newton’s Method applied to g(z) = z*(z>

—1). After 10 iterations points in the white and colored regions

come to within 0.001 of a root while points in the black region
have not come close to any root.

plied to the modified polynomial g(z) = z(z + 0.01)(z>
— 1), that has no double roots, we see in Fig. 4 that
the two close roots cause problems with Newton’s
method. This is because the range in which quadratic
convergence occurs is extremely small near these close
roots.

Another technique for dealing with multiple roots
is the relaxed Newton’s method. If w is a root of g(z)
of order k then
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Fig. 4. The standard Newton’s Method applied to g(z) = z(z

+0.01)(z* — 1). After 10 iterations points in the white and

colored regions come to within 0.001 of a root while points
in the black region have not come close to any root.



Newton’s method for multiple roots

will converge quadratically at the root w [4, Eqgs. 8.6-
13]. However, this method is hopeless if the root is
not of order exactly k. The white region in Fig. 5 is
the basin of attraction of the double root at the origin,
under the relaxed Newton’s method with k = 2. The
cube roots of unity are fixed points under this method
but N5(w) = —1, for any cube root w. Since this mul-
tiplier has modulus 1, a simple root of g(z) is a neutral
(or indifferent) fixed point for the method N,(z).
Newton’s method will behave very badly near these
roots. Any neighborhood of such a neutral fixed point
contains some points that are in the basin of attraction
of the neutral point and some points that are not. The
black regions in Fig. 5 are the basins of attraction of
the cube roots, but it would require thousands of it-
erations for points in these regions to come close to
the roots[5].

If some roots of g(z) are only approximately mul-
tiple, then the convergence of the relaxed Newton’s
method at these roots changes drastically. Figure 6 il-
lustrates the relaxed Newton’s method N,(z) applied
to g(z) = z(z + 0.01)(z> — 1) after 3000 iterations.
Compare Fig. 5 and Fig. 6. The large white area in Fig.
5, which is the basin of attraction of the double root,
now contains large areas of black in Fig. 6 that have
not converged to a root after 3000 iterations! However
this is not a good representation of the actual basins
of attractions of the two close roots. This diagram is
very sensitive to how close we require the method to
come to a root; changing the tolerance 0.004 to another
value would substantially alter the diagram. In contrast,
Newton’s method for a multiple root is insensitive to
the tolerance parameter; changing the tolerance from
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Fig. 5. The relaxed Newton’s Method for a double root applied
to g(z) = z2(z> — 1). After 100 iterations points in the white
region come to within 0.001 of the double root at the origin

while points in the black regions have not come close to any
root.

Fig. 6. The relaxed Newton’s Method for a double root applied

to g(z) = z(z + 0.01)(z* — 1). After 3000 iterations points

in the white and colored regions come to within 0.004 of a
root.

0.001 in Figs. 1 or 2 would not change the figures sig-
nificantly. Notice also that the values in the black re-
gions of Fig. 5 are now colored in Fig. 6, indicating
that they have converged to the cube roots of unity.
This would have also occurred in Fig. 5, if we had
iterated the method 3000 times.

Figures 1, 3, and 5 show three different Newton
methods applied to the same polynomial with a double
root. All the roots in the three figures are the same,
but the basins of attractions are quite different, and
the rate of convergence to the roots also varies tre-
mendously. Likewise, Figs. 2, 4, and 6 show the three
different Newton methods applied to another poly-
nomial that has two almost equal roots. These figures
show how sensitive the methods are to a double root
dividing into two simple roots.

These last two figures show that the relaxed Newton’s
method is very sensitive to the two roots being exactly
equal, and so it will never be a good method in practice,
even if the initial approximation is quite close to the
(nearly) equal roots. Newton’s method for a multiple
root is much safer.
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